IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i1p11-31.html
   My bibliography  Save this article

A nonparametric approach to 3D shape analysis from digital camera images -- I

Author

Listed:
  • Patrangenaru, V.
  • Liu, X.
  • Sugathadasa, S.

Abstract

This article for the first time develops a nonparametric methodology for the analysis of projective shapes of configurations of landmarks on real 3D objects from their regular camera pictures. A fundamental result in computer vision, emulating the principle of human vision in space, claims that, generically, a finite 3D configuration of points can be retrieved from corresponding configurations in a pair of camera images, up to a projective transformation. Consequently, the projective shape of a 3D configuration can be retrieved from two of its planar views, and a projective shape analysis can be pursued from a sample of images. Projective shapes are here regarded as points on projective shape manifolds. Using large sample and nonparametric bootstrap methodology for extrinsic means on manifolds, one gives confidence regions and tests for the mean projective shape of a 3D configuration from its 2D camera images. Two examples are given: an example of testing for accuracy of a simple manufactured object using mean projective shape analysis, and a face identification example. Both examples are data driven based on landmark registration in digital images.

Suggested Citation

  • Patrangenaru, V. & Liu, X. & Sugathadasa, S., 2010. "A nonparametric approach to 3D shape analysis from digital camera images -- I," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 11-31, January.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:1:p:11-31
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00048-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Munk, A. & Paige, R. & Pang, J. & Patrangenaru, V. & Ruymgaart, F., 2008. "The one- and multi-sample problem for functional data with application to projective shape analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 815-833, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    2. Amanda Plunkett & Junyong Park, 2019. "Two-sample test for sparse high-dimensional multinomial distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 804-826, September.
    3. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    4. Vic Patrangenaru & Mingfei Qiu & Marius Buibas, 2014. "Two Sample Tests for Mean 3D Projective Shapes from Digital Camera Images," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 485-506, June.
    5. Victor Patrangenaru & Robert Paige & K. David Yao & Mingfei Qiu & David Lester, 2016. "Projective shape analysis of contours and finite 3D configurations from digital camera images," Statistical Papers, Springer, vol. 57(4), pages 1017-1040, December.
    6. Ellingson, Leif & Patrangenaru, Vic & Ruymgaart, Frits, 2013. "Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 317-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:1:p:11-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.