IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i10p2389-2397.html
   My bibliography  Save this article

Multivariate logistic regression with incomplete covariate and auxiliary information

Author

Listed:
  • Sinha, Sanjoy K.
  • Laird, Nan M.
  • Fitzmaurice, Garrett M.

Abstract

In this article, we propose and explore a multivariate logistic regression model for analyzing multiple binary outcomes with incomplete covariate data where auxiliary information is available. The auxiliary data are extraneous to the regression model of interest but predictive of the covariate with missing data. Horton and Laird [N.J. Horton, N.M. Laird, Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information, Biometrics 57 (2001) 34-42] describe how the auxiliary information can be incorporated into a regression model for a single binary outcome with missing covariates, and hence the efficiency of the regression estimators can be improved. We consider extending the method of [9] to the case of a multivariate logistic regression model for multiple correlated outcomes, and with missing covariates and completely observed auxiliary information. We demonstrate that in the case of moderate to strong associations among the multiple outcomes, one can achieve considerable gains in efficiency from estimators in a multivariate model as compared to the marginal estimators of the same parameters.

Suggested Citation

  • Sinha, Sanjoy K. & Laird, Nan M. & Fitzmaurice, Garrett M., 2010. "Multivariate logistic regression with incomplete covariate and auxiliary information," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2389-2397, November.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2389-2397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00129-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas J. Horton & Nan M. Laird, 2001. "Maximum Likelihood Analysis of Logistic Regression Models with Incomplete Covariate Data and Auxiliary Information," Biometrics, The International Biometric Society, vol. 57(1), pages 34-42, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Li & Xiang, Liming, 2019. "Missing covariate data in generalized linear mixed models with distribution-free random effects," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2389-2397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.