IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v69y2016i10p4565-4582.html
   My bibliography  Save this article

Assessing the predictive performance of structural equation model estimators

Author

Listed:
  • Evermann, Joerg
  • Tate, Mary

Abstract

Structural equation models are traditionally used for theory testing. With the increasing importance of predictive analytics, and the ability of structural equation models to maintain theoretical plausibility in the context of predictive modeling, identifying how best to predict from structural equation models is important. Recent calls for a refocusing of partial least squares path modeling (PLSPM) on predictive applications further increase the need to assess and compare the predictive power of different estimation methods for structural equation models. This paper presents two simulation studies that evaluate the performance of different modes and variations of PLSPM and covariance analysis on prediction from structural equation models. Study 1 examines all-reflective models using blindfolding and the Q2 statistic. Study 2 examines mixed formative-reflective models using out-of-sample cross-validation and the RMSE statistic. Recommendations to guide researchers in the choice of appropriate prediction method are offered.

Suggested Citation

  • Evermann, Joerg & Tate, Mary, 2016. "Assessing the predictive performance of structural equation model estimators," Journal of Business Research, Elsevier, vol. 69(10), pages 4565-4582.
  • Handle: RePEc:eee:jbrese:v:69:y:2016:i:10:p:4565-4582
    DOI: 10.1016/j.jbusres.2016.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014829631630128X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2016.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Antonakis & Samuel Bendahan & Philippe Jacquart & Rafael Lalive, 2010. "On making causal claims : A review and recommendations," Post-Print hal-02313119, HAL.
    2. Michel Tenenhaus, 2011. "Regularized generalized canonical correlation analysis," Post-Print hal-00578321, HAL.
    3. Arthur Tenenhaus & Michel Tenenhaus, 2011. "Regularized Generalized Canonical Correlation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 257-284, April.
    4. Michel Tenenhaus & Arthur Tenenhaus, 2011. "Regularized Generalized Canonical Correlation Analysis," Post-Print hal-00609220, HAL.
    5. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    6. John Hulland, 1999. "Use of partial least squares (PLS) in strategic management research: a review of four recent studies," Strategic Management Journal, Wiley Blackwell, vol. 20(2), pages 195-204, February.
    7. Shmueli, Galit & Ray, Soumya & Velasquez Estrada, Juan Manuel & Chatla, Suneel Babu, 2016. "The elephant in the room: Predictive performance of PLS models," Journal of Business Research, Elsevier, vol. 69(10), pages 4552-4564.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarstedt, Marko & Hair, Joseph F. & Ringle, Christian M. & Thiele, Kai O. & Gudergan, Siegfried P., 2016. "Estimation issues with PLS and CBSEM: Where the bias lies!," Journal of Business Research, Elsevier, vol. 69(10), pages 3998-4010.
    2. Joseph F. Hair & G. Tomas M. Hult & Christian M. Ringle & Marko Sarstedt & Kai Oliver Thiele, 2017. "Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods," Journal of the Academy of Marketing Science, Springer, vol. 45(5), pages 616-632, September.
    3. Cristina Davino & Pasquale Dolce & Stefania Taralli & Domenico Vistocco, 2022. "Composite-Based Path Modeling for Conditional Quantiles Prediction. An Application to Assess Health Differences at Local Level in a Well-Being Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 907-936, June.
    4. Pasquale Dolce & Vincenzo Esposito Vinzi & Natale Carlo Lauro, 2018. "Non-symmetrical composite-based path modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 759-784, September.
    5. Mayr, Kathrin & Teller, Christoph, 2023. "Customer deviance in retailing: Managers’ emotional support and employees’ affective wellbeing," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    6. Husson, François & Josse, Julie & Saporta, Gilbert, 2016. "Jan de Leeuw and the French School of Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i06).
    7. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    8. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    9. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    10. Heungsun Hwang & Gyeongcheol Cho, 2020. "Global Least Squares Path Modeling: A Full-Information Alternative to Partial Least Squares Path Modeling," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 947-972, December.
    11. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    12. Rosaria Romano & Francesco Palumbo, 2021. "Partial possibilistic regression path modeling: handling uncertainty in path modeling," Computational Statistics, Springer, vol. 36(1), pages 615-639, March.
    13. Florian Rohart & Benoît Gautier & Amrit Singh & Kim-Anh Lê Cao, 2017. "mixOmics: An R package for ‘omics feature selection and multiple data integration," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
    14. Lukáš Malec & Vladimír Janovský, 2020. "Connecting the multivariate partial least squares with canonical analysis: a path-following approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 589-609, September.
    15. Shen, Cencheng & Sun, Ming & Tang, Minh & Priebe, Carey E., 2014. "Generalized canonical correlation analysis for classification," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 310-322.
    16. Stéphanie Bougeard & Hervé Abdi & Gilbert Saporta & Ndèye Niang, 2018. "Clusterwise analysis for multiblock component methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 285-313, June.
    17. Cristina Davino & Vincenzo Esposito Vinzi, 2016. "Quantile composite-based path modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 491-520, December.
    18. Tianpeng Li & Shaocang He & Tingting Shen & Jing Sun & Chenxu Sun & Haoqi Pan & Dehai Yu & Wenxue Lu & Runyao Li & Enshan Zhang & Xuqian Lu & Yuxuan Fan & Guiyue Gao, 2022. "Using One-Step Acid Leaching for the Recovering of Coal Gasification Fine Slag as Functional Adsorbents: Preparation and Performance," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    19. Bingsheng Liu & Tengfei Huo & Pinchao Liao & Jie Gong & Bin Xue, 2015. "A Group Decision-Making Aggregation Model for Contractor Selection in Large Scale Construction Projects Based on Two-Stage Partial Least Squares (PLS) Path Modeling," Group Decision and Negotiation, Springer, vol. 24(5), pages 855-883, September.
    20. Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:69:y:2016:i:10:p:4565-4582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.