IDEAS home Printed from https://ideas.repec.org/a/eee/japwor/v68y2023ics0922142523000373.html
   My bibliography  Save this article

To use or not to use, that is the question: Income and substitution effects in the feed-in tariff system for solar-generated electricity

Author

Listed:
  • Yang, Xinyue
  • Matsumoto, Shigeru

Abstract

Feed-in tariff (FIT) is an important worldwide initiative to encourage renewable electricity technologies. Under the Japanese FIT system, households with solar panels decide the amount of both self-consumption and sales to the power company. By analyzing the household self-consumption and sales behaviors of solar-generated electricity obtained from the Ministry of the Environment of Japan, we examine (1) whether the rate of increase in electricity sales by households is higher or lower than the rate of increase in solar power generation and (2) whether self-consumption and sales behaviors of solar-generated electricity differ among households with different sales prices. The results show that the rate of increase in electricity sales is lower than that in solar electricity generation. This suggests that households increase their self-consumption as solar power generation increases. However, as the rate of increase in self-consumption is relatively low, solar-generated electricity is considered as a necessary good. Furthermore, we find that higher sales prices induce households to reduce their self-consumption and increase solar electricity sales to power companies.

Suggested Citation

  • Yang, Xinyue & Matsumoto, Shigeru, 2023. "To use or not to use, that is the question: Income and substitution effects in the feed-in tariff system for solar-generated electricity," Japan and the World Economy, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:japwor:v:68:y:2023:i:c:s0922142523000373
    DOI: 10.1016/j.japwor.2023.101211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0922142523000373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.japwor.2023.101211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    2. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    3. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    4. Elbert Dijkgraaf & Tom P. van Dorp & Emiel Maasland, 2018. "On the Effectiveness of Feed-in Tariffs in the Development of Solar Photovoltaics," The Energy Journal, , vol. 39(1), pages 81-100, January.
    5. Schröder, Carsten & Rehdanz, Katrin & Narita, Daiju & Okubo, Toshihiro, 2015. "The decline in average family size and its implications for the average benefits of within‐household sharing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67(3), pages 760-780.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Karneyeva, Yuliya & Wüstenhagen, Rolf, 2017. "Solar feed-in tariffs in a post-grid parity world: The role of risk, investor diversity and business models," Energy Policy, Elsevier, vol. 106(C), pages 445-456.
    8. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    9. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    10. Pyrgou, Andri & Kylili, Angeliki & Fokaides, Paris A., 2016. "The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics," Energy Policy, Elsevier, vol. 95(C), pages 94-102.
    11. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & , 2014. "Feed-in tariff for solar photovoltaic: The rise of Japan," Renewable Energy, Elsevier, vol. 68(C), pages 636-643.
    12. Andrea La Nauze, 2019. "Power from the People: Rooftop Solar and a Downward-Sloping Supply of Electricity," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1135-1168.
    13. Kenta Tanaka & Clevo Wilson & Shunsuke Managi, 2022. "Impact of feed-in tariffs on electricity consumption," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 49-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Dipti & Das, Abhiman & Garg, Amit, 2019. "Financial support vis-à-vis share of wind generation: Is there an inflection point?," Energy, Elsevier, vol. 181(C), pages 1064-1074.
    2. Dong, Changgui & Zhou, Runmin & Li, Jiaying, 2021. "Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China," Applied Energy, Elsevier, vol. 281(C).
    3. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis," Renewable Energy, Elsevier, vol. 171(C), pages 1257-1275.
    4. Liu, Diyi & Zou, Hongyang & Qiu, Yueming & Du, Huibin, 2024. "Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry," Energy Economics, Elsevier, vol. 129(C).
    5. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    6. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    7. Ossenbrink, Jan, 2017. "How feed-in remuneration design shapes residential PV prosumer paradigms," Energy Policy, Elsevier, vol. 108(C), pages 239-255.
    8. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    9. Mah, Daphne Ngar-yin & Cheung, Darren Man-wai & Leung, Michael K.H. & Wang, Maggie Yachao & Wong, Mandy Wai-ming & Lo, Kevin & Cheung, Altair T.F., 2021. "Policy mixes and the policy learning process of energy transitions: Insights from the feed-in tariff policy and urban community solar in Hong Kong," Energy Policy, Elsevier, vol. 157(C).
    10. Bogdan Klepacki & Barbara Kusto & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski & Aleksandra Perkowska & Tomasz Rokicki, 2021. "Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas," Energies, MDPI, vol. 14(11), pages 1-17, May.
    11. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    13. López Prol, Javier, 2018. "Regulation, profitability and diffusion of photovoltaic grid-connected systems: A comparative analysis of Germany and Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1170-1181.
    14. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    15. Nicholas Mukisa & Ramon Zamora & Tek Tjing Lie, 2022. "Energy Business Initiatives for Grid-Connected Solar Photovoltaic Systems: An Overview," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    16. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    17. Burtt, D. & Dargusch, P., 2015. "The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions," Applied Energy, Elsevier, vol. 148(C), pages 439-448.
    18. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    19. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    20. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.

    More about this item

    Keywords

    Feed-in Tariff; Income Effect; Solar Electricity; Subsection Effect;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:japwor:v:68:y:2023:i:c:s0922142523000373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505557 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.