IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i2p424-439.html
   My bibliography  Save this article

An overview of the effects of algorithm use on judgmental biases affecting forecasting

Author

Listed:
  • Chacon, Alvaro
  • Kaufmann, Esther

Abstract

In the realm of forecasting, judgmental biases often hinder efficiency and accuracy. Algorithms present a promising avenue for decision makers to enhance their forecasting performance. In this overview, we scrutinized the occurrence of the most relevant judgmental biases affecting forecasting across 162 papers, drawing from four recent reviews and papers published in forecasting journals, specifically focusing on the use of algorithms. Thirty-three of the 162 papers (20.4%) at least briefly mentioned one of twelve judgmental biases affecting forecasting. Our comprehensive analysis suggests that algorithms can potentially mitigate the adverse impacts of biases inherent in human judgment related to forecasting. Furthermore, these algorithms can leverage biases as an advantage, enhancing forecast accuracy. Intriguing revelations have surfaced, focusing mainly on four biases. By providing timely, relevant, well-performing, and consistent algorithmic advice, people can be effectively influenced to improve their forecasts, considering anchoring, availability, inconsistency, and confirmation bias. The findings highlight the gaps in the current research landscape and provide recommendations for practitioners. They also lay the groundwork for future studies on utilizing algorithms (e.g., large language models) and overcoming judgmental biases to improve forecasting performance.

Suggested Citation

  • Chacon, Alvaro & Kaufmann, Esther, 2025. "An overview of the effects of algorithm use on judgmental biases affecting forecasting," International Journal of Forecasting, Elsevier, vol. 41(2), pages 424-439.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:424-439
    DOI: 10.1016/j.ijforecast.2024.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024001018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:424-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.