IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p321-344.html
   My bibliography  Save this article

Cross-temporal forecast reconciliation at digital platforms with machine learning

Author

Listed:
  • Rombouts, Jeroen
  • Ternes, Marie
  • Wilms, Ines

Abstract

Platform businesses operate on a digital core, and their decision-making requires high-dimensional accurate forecast streams at different levels of cross-sectional (e.g., geographical regions) and temporal aggregation (e.g., minutes to days). It also necessitates coherent forecasts across all hierarchy levels to ensure aligned decision-making across different planning units such as pricing, product, controlling, and strategy. Given that platform data streams feature complex characteristics and interdependencies, we introduce a non-linear hierarchical forecast reconciliation method that produces cross-temporal reconciled forecasts in a direct and automated way through popular machine learning methods. The method is sufficiently fast to allow forecast-based high-frequency decision-making that platforms require. We empirically test our framework on unique, large-scale streaming datasets from a leading on-demand delivery platform in Europe and a bicycle-sharing system in New York City.

Suggested Citation

  • Rombouts, Jeroen & Ternes, Marie & Wilms, Ines, 2025. "Cross-temporal forecast reconciliation at digital platforms with machine learning," International Journal of Forecasting, Elsevier, vol. 41(1), pages 321-344.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:321-344
    DOI: 10.1016/j.ijforecast.2024.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:321-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.