IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p290-306.html
   My bibliography  Save this article

Multi-view locally weighted regression for loss given default forecasting

Author

Listed:
  • Cheng, Hui
  • Jiang, Cuiqing
  • Wang, Zhao
  • Ni, Xiaoya

Abstract

Accurately forecasting loss given default (LGD) poses challenges, due to its highly skewed distributions and complex nonlinear dependencies with predictors. To this end, we propose a multi-view locally weighted regression (MVLWR) method for LGD forecasting. To address the complexity of LGD distributions, we build a specific ensemble LGD forecasting model tailored for each new sample, providing flexibility and relaxing reliance on distribution assumptions. To address complex relationships, we combine multi-view learning and ensemble learning for LGD modeling. Specifically, we divide original features into multiple complementary groups, build a view-specific locally weighted model for each group, and aggregate the outputs from all view-specific models. An empirical evaluation using a real-world dataset shows that the proposed method outperforms all the benchmarked methods in terms of both out-of-sample and out-of-time performance in LGD forecasting. We also provide valuable insights and practical implications for stakeholders, particularly financial institutions, to enhance their LGD forecasting capabilities.

Suggested Citation

  • Cheng, Hui & Jiang, Cuiqing & Wang, Zhao & Ni, Xiaoya, 2025. "Multi-view locally weighted regression for loss given default forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 290-306.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:290-306
    DOI: 10.1016/j.ijforecast.2024.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:290-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.