IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p270-289.html
   My bibliography  Save this article

ABC-based forecasting in misspecified state space models

Author

Listed:
  • Weerasinghe, Chaya
  • Loaiza-Maya, Rubén
  • Martin, Gael M.
  • Frazier, David T.

Abstract

Approximate Bayesian Computation (ABC) has gained popularity as a method for conducting inference and forecasting in complex models, most notably those which are intractable in some sense. In this paper, we use ABC to produce probabilistic forecasts in state space models (SSMs). Whilst ABC-based forecasting in correctly-specified SSMs has been studied, the misspecified case has not been investigated. It is this case that we emphasize. We invoke recent principles of ‘focused’ Bayesian prediction, whereby Bayesian updates are driven by a scoring rule that rewards predictive accuracy; the aim being to produce predictives that perform well in that rule, despite misspecification. Two methods are investigated for producing the focused predictions. In a simulation setting, ‘coherent’ predictions are in evidence for both methods. That is, the predictive constructed using a particular scoring rule often predicts best according to that rule. Importantly, both focused methods typically produce more accurate forecasts than an exact but misspecified predictive, in particular when the degree of misspecification is marked. An empirical application to a truly intractable SSM completes the paper.

Suggested Citation

  • Weerasinghe, Chaya & Loaiza-Maya, Rubén & Martin, Gael M. & Frazier, David T., 2025. "ABC-based forecasting in misspecified state space models," International Journal of Forecasting, Elsevier, vol. 41(1), pages 270-289.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:270-289
    DOI: 10.1016/j.ijforecast.2024.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702400044X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:270-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.