IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p229-250.html
   My bibliography  Save this article

Asymmetric uncertainty: Nowcasting using skewness in real-time data

Author

Listed:
  • Labonne, Paul

Abstract

This paper presents a new way to account for downside and upside risks when producing density nowcasts of GDP growth. The approach relies on modelling location, scale, and shape common factors in real-time macroeconomic data. While movements in the location generate shifts in the central part of the predictive density, the scale controls its dispersion (akin to general uncertainty) and the shape its asymmetry, or skewness (akin to downside and upside risks). The empirical application is centred on US GDP growth, and the real-time data come from FRED-MD. The results show that there is more to real-time data than their levels or means: their dispersion and asymmetry provide valuable information for nowcasting economic activity. Scale and shape common factors (i) yield more reliable measures of uncertainty and (ii) improve precision when macroeconomic uncertainty is at its peak.

Suggested Citation

  • Labonne, Paul, 2025. "Asymmetric uncertainty: Nowcasting using skewness in real-time data," International Journal of Forecasting, Elsevier, vol. 41(1), pages 229-250.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:229-250
    DOI: 10.1016/j.ijforecast.2024.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:229-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.