IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p191-207.html
   My bibliography  Save this article

Boosting domain-specific models with shrinkage: An application in mortality forecasting

Author

Listed:
  • Li, Li
  • Li, Han
  • Panagiotelis, Anastasios

Abstract

This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby geographical regions closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.

Suggested Citation

  • Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:191-207
    DOI: 10.1016/j.ijforecast.2024.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:191-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.