IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i3p456-460.html
   My bibliography  Save this article

Mining the past to determine the future: Comments

Author

Listed:
  • Crone, Sven F.

Abstract

In forecasting, data mining is frequently perceived as a distinct technological discipline without immediate relevance to the challenges of time series prediction. However, Hand (2009) postulates that when the large cross-sectional datasets of data mining and the high-frequency time series of forecasting converge, common problems and opportunities are created for the two disciplines. This commentary attempts to establish the relationship between data mining and forecasting via the dataset properties of aggregate and disaggregate modelling, in order to identify areas where research in data mining may contribute to current forecasting challenges, and vice versa. To forecasting, data mining offers insights on how to handle large, sparse datasets with many binary variables, in feature and instance selection. Furthermore data mining and related disciplines may stimulate research into how to overcome selectivity bias using reject inference on observational datasets and, through the use of experimental time series data, how to extend the utility and costs of errors beyond measuring performance, and how to find suitable time series benchmarks to evaluate computer intensive algorithms. Equally, data mining can profit from forecasting's expertise in handling nonstationary data to counter the out-of-date-data problem, and how to develop empirical evidence beyond the fine tuning of algorithms, leading to a number of potential synergies and stimulating research in both data mining and forecasting.

Suggested Citation

  • Crone, Sven F., 2009. "Mining the past to determine the future: Comments," International Journal of Forecasting, Elsevier, vol. 25(3), pages 456-460, July.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:456-460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00093-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:456-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.