IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v20y2004i3p503-514.html
   My bibliography  Save this article

Parameter estimation and tests of equal forecast accuracy between non-nested models

Author

Listed:
  • McCracken, Michael W.

Abstract

No abstract is available for this item.

Suggested Citation

  • McCracken, Michael W., 2004. "Parameter estimation and tests of equal forecast accuracy between non-nested models," International Journal of Forecasting, Elsevier, vol. 20(3), pages 503-514.
  • Handle: RePEc:eee:intfor:v:20:y:2004:i:3:p:503-514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(03)00063-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    4. West, Kenneth D, 2001. "Tests for Forecast Encompassing When Forecasts Depend on Estimated Regression Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 29-33, January.
    5. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    6. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    7. Rapach, David E. & Wohar, Mark E., 2002. "Testing the monetary model of exchange rate determination: new evidence from a century of data," Journal of International Economics, Elsevier, vol. 58(2), pages 359-385, December.
    8. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
    9. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Schnader, M H & Stekler, H O, 1990. "Evaluating Predictions of Change," The Journal of Business, University of Chicago Press, vol. 63(1), pages 99-107, January.
    12. Park, Timothy A., 1990. "Forecast Evaluation For Multivariate Time-Series Models: The U.S. Cattle Market," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(1), pages 1-11, July.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    15. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    16. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    17. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
    18. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    19. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
    20. Edlund, Per-Olov & Karlsson, Sune, 1993. "Forecasting the Swedish unemployment rate VAR vs. transfer function modelling," International Journal of Forecasting, Elsevier, vol. 9(1), pages 61-76, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    2. Aaron J. Amburgey & Michael W. McCracken, 2023. "On the real‐time predictive content of financial condition indices for growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 137-163, March.
    3. C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
    4. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    5. Daniel Hartmann & Christian Pierdzioch, 2007. "International equity flows and the predictability of US stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 583-599.
    6. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Andrea Ajello & Luca Benzoni & Olena Chyruk & Stijn Van Nieuwerburgh, 2020. "Core and ‘Crust’: Consumer Prices and the Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 33(8), pages 3719-3765.
    8. Todd E. Clark & Michael W. McCracken, 2014. "Evaluating Conditional Forecasts from Vector Autoregressions," Working Papers (Old Series) 1413, Federal Reserve Bank of Cleveland.
    9. Francisco Javier Eransus & Alfonso Novales Cinca, 2014. "Parameter Estimation Error in Tests of Predictive Performance under Discrete Loss Functions," Documentos de Trabajo del ICAE 2014-22, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    10. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    11. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    12. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    13. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
    14. Bob Nobay & Ivan Paya & David A. Peel, 2010. "Inflation Dynamics in the U.S.: Global but Not Local Mean Reversion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 135-150, February.
    15. Guidolin, Massimo & Pedio, Manuela, 2019. "Forecasting and trading monetary policy effects on the riskless yield curve with regime switching Nelson–Siegel models," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    16. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    17. Todd E. Clark & Michael W. McCracken, 2013. "Evaluating the accuracy of forecasts from vector autoregressions," Working Papers 2013-010, Federal Reserve Bank of St. Louis.
    18. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
    19. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    20. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    2. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    3. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
    6. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    7. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    8. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    9. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    10. Todd E. Clark & Michael W. McCracken, 2001. "Evaluating long-horizon forecasts," Research Working Paper RWP 01-14, Federal Reserve Bank of Kansas City.
    11. Richard H. Clarida & Lucio Sarno & Mark P. Taylor & Giorgio Valente, 2006. "The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1193-1224, May.
    12. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    15. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    16. Costas Milas & Ruthira Naraidoo, 2009. "Financial Market Conditions, Real Time, Nonlinearity and European Central Bank Monetary Policy: In-Sample and Out-of-Sample Assessment," Working Papers 200923, University of Pretoria, Department of Economics.
    17. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
    18. Renee van Eyden & Goodness C. Aye & Rangan Gupta, 2012. "Predictive Ability of Competing Models for South Africa’s Fixed Business Non- Residential Investment Spending," Working Papers 201229, University of Pretoria, Department of Economics.
    19. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    20. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:20:y:2004:i:3:p:503-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.