IDEAS home Printed from https://ideas.repec.org/a/eee/inteco/v146y2016icp40-58.html
   My bibliography  Save this article

A self-organizing map analysis of survey-based agents׳ expectations before impending shocks for model selection: The case of the 2008 financial crisis

Author

Listed:
  • Claveria, Oscar
  • Monte, Enric
  • Torra, Salvador

Abstract

This paper examines the role of clustering techniques to assist in the selection of the most indicated method to model survey-based expectations. First, relying on a Self-Organizing Map (SOM) analysis and using the financial crisis of 2008 as a benchmark, we distinguish between countries that show a progressive anticipation of the crisis, and countries where sudden changes in expectations occur. We then generate predictions of survey indicators, which are usually used as explanatory variables in econometric models. We compare the forecasting performance of a multi-layer perceptron (MLP) Artificial Neural Network (ANN) model to that of three different time series models. By combining both types of analysis, we find that ANN models outperform time series models in countries in which the evolution of expectations shows brisk changes before impending shocks. Conversely, in countries where expectations follow a smooth transition towards recession, autoregressive integrated moving-average (ARIMA) models outperform neural networks.

Suggested Citation

  • Claveria, Oscar & Monte, Enric & Torra, Salvador, 2016. "A self-organizing map analysis of survey-based agents׳ expectations before impending shocks for model selection: The case of the 2008 financial crisis," International Economics, Elsevier, vol. 146(C), pages 40-58.
  • Handle: RePEc:eee:inteco:v:146:y:2016:i:c:p:40-58
    DOI: 10.1016/j.inteco.2015.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2110701715000694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.inteco.2015.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Hak Kim, 2022. "A dynamic analysis of household debt using a self-organizing map," Empirical Economics, Springer, vol. 62(6), pages 2893-2919, June.
    2. Oscar Claveria, 2017. "“What really matters is the economic performance: Positioning tourist destinations by means of perceptual maps”," AQR Working Papers 201707, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2017.
    3. Hector M. Zarate-Solano & Daniel R. Zapata-Sanabria, 2017. "Clustering and forecasting inflation expectations using the World Economic Survey: the case of the 2014 oil price shock on inflation targeting countries," Borradores de Economia 993, Banco de la Republica de Colombia.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.

    More about this item

    Keywords

    Business surveys indicators; Expectations; Self-Organizing Maps; Artificial Neural Networks; Time series models; Forecasting;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:inteco:v:146:y:2016:i:c:p:40-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/21107017 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.