IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v82y2018icp11-20.html
   My bibliography  Save this article

On fair reinsurance premiums; Capital injections in a perturbed risk model

Author

Listed:
  • Ben Salah, Zied
  • Garrido, José

Abstract

We consider a risk model where deficits after ruin are covered by a new type of reinsurance contract that provides capital injections. To allow the insurance company’s survival after ruin, the reinsurer injects capital only at ruin times caused by jumps larger than a chosen retention level. Otherwise capital must be raised from the shareholders for small deficits. The problem here is to determine adequate reinsurance premiums. It seems fair to base the net reinsurance premium on the discounted expected value of any future capital injections. Inspired by the results of Huzak et al. (2004) and Ben Salah (2014) on successive ruin events, we show that an explicit formula for these reinsurance premiums exists in a setting where aggregate claims are modeled by a subordinator and a Brownian perturbation. Here ruin events are due either to Brownian oscillations or jumps and reinsurance capital injections only apply in the latter case. The results are illustrated explicitly for two specific risk models and in some numerical examples.

Suggested Citation

  • Ben Salah, Zied & Garrido, José, 2018. "On fair reinsurance premiums; Capital injections in a perturbed risk model," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 11-20.
  • Handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:11-20
    DOI: 10.1016/j.insmatheco.2018.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717305358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    2. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    3. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    4. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    5. Dufresne, François & Gerber, Hans U. & Shiu, Elias S. W., 1991. "Risk Theory with the Gamma Process," ASTIN Bulletin, Cambridge University Press, vol. 21(2), pages 177-192, November.
    6. Florin Avram & Sooie-Hoe Loke, 2018. "On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics," Risks, MDPI, vol. 6(2), pages 1-18, April.
    7. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    8. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    9. Zied Ben-Salah & Hélène Guérin & Manuel Morales & Hassan Omidi Firouzi, 2015. "On the Depletion Problem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk Theory," Post-Print hal-01044440, HAL.
    10. Furrer, H. J. & Schmidli, H., 1994. "Exponential inequalities for ruin probabilities of risk processes perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 15(1), pages 23-36, October.
    11. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    12. Hans Gerber & Elias Shiu, 1998. "Pricing Perpetual Options for Jump Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(3), pages 101-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eisenberg, Julia & Fabrykowski, Lukas & Schmeck, Maren Diane, 2021. "Optimal Surplus-dependent Reinsurance under Regime-Switching in a Brownian Risk Model," Center for Mathematical Economics Working Papers 648, Center for Mathematical Economics, Bielefeld University.
    2. Julia Eisenberg & Lukas Fabrykowski & Maren Diane Schmeck, 2021. "Optimal Surplus-Dependent Reinsurance under Regime-Switching in a Brownian Risk Model," Risks, MDPI, vol. 9(4), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morales, Manuel, 2007. "On the expected discounted penalty function for a perturbed risk process driven by a subordinator," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 293-301, March.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    4. Zied Ben Salah & Jos'e Garrido, 2017. "On Fair Reinsurance Premiums; Capital Injections in a Perturbed Risk Model," Papers 1710.11065, arXiv.org, revised Jun 2018.
    5. Zied Ben-Salah & H'el`ene Gu'erin & Manuel Morales & Hassan Omidi Firouzi, 2014. "On the Depletion Problem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk Theory," Papers 1406.6952, arXiv.org.
    6. Kolkovska, Ekaterina T. & Martín-González, Ehyter M., 2016. "Gerber–Shiu functionals for classical risk processes perturbed by an α-stable motion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 22-28.
    7. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    8. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    9. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    10. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    11. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    12. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    13. Shimizu, Yasutaka & Zhang, Zhimin, 2017. "Estimating Gerber–Shiu functions from discretely observed Lévy driven surplus," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 84-98.
    14. Tsai, Cary Chi-Liang, 2001. "On the discounted distribution functions of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 401-419, June.
    15. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    16. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    17. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
    18. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    19. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    20. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:11-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.