IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v51y2012i3p551-566.html
   My bibliography  Save this article

Optimal investment and consumption when regime transitions cause price shocks

Author

Listed:
  • Lim, Andrew E.B.
  • Watewai, Thaisiri

Abstract

This paper concerns optimal investment and consumption with CRRA utility when there is event risk. Events are modeled by transitions in a finite state Markov chain, but unlike traditional regime switching models, transitions not only change the instantaneous return statistics but are accompanied by jumps in the price at the instant of transition. Optimal investment and consumption policies are characterized using stochastic control methods and computed by solving a system of ordinary differential equations and a convex optimization problem. We show that optimal policies are significantly different from those of traditional regime switching or jump-diffusion problems and that the cost of ignoring transition price shocks can be substantial.

Suggested Citation

  • Lim, Andrew E.B. & Watewai, Thaisiri, 2012. "Optimal investment and consumption when regime transitions cause price shocks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 551-566.
  • Handle: RePEc:eee:insuma:v:51:y:2012:i:3:p:551-566
    DOI: 10.1016/j.insmatheco.2012.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871200090X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    2. Yihong Xia, 2001. "Learning about Predictability: The Effects of Parameter Uncertainty on Dynamic Asset Allocation," Journal of Finance, American Finance Association, vol. 56(1), pages 205-246, February.
    3. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    4. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    5. repec:bla:jfinan:v:59:y:2004:i:6:p:2809-2834 is not listed on IDEAS
    6. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    7. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    8. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chotipong Charoensom & Thaisiri Watewai, 2022. "Optimal Liquidity Control and Systemic Risk in an Interbank Network with Liquidity Shocks and Regime-dependent Interconnectedness," PIER Discussion Papers 175, Puey Ungphakorn Institute for Economic Research.
    2. Campani, Carlos Heitor & Garcia, René & Lewin, Marcelo, 2021. "Optimal portfolio strategies in the presence of regimes in asset returns," Journal of Banking & Finance, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    2. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    3. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    4. repec:wyi:journl:002108 is not listed on IDEAS
    5. Kshatriya, Saranya & Prasanna, Krishna, 2021. "Jump Interdependencies: Stochastic linkages among international stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    6. Jin, Xing & Zhang, Kun, 2013. "Dynamic optimal portfolio choice in a jump-diffusion model with investment constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1733-1746.
    7. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    8. Marius Ascheberg & Nicole Branger & Holger Kraft & Frank Thomas Seifried, 2016. "When do jumps matter for portfolio optimization?," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1297-1311, August.
    9. Jérôme Detemple, 2014. "Portfolio Selection: A Review," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 1-21, April.
    10. Branger, Nicole & Mahayni, Antje & Zieling, Daniel, 2015. "Robustness of stable volatility strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 134-151.
    11. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    12. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    13. Branger, Nicole & Hansis, Alexandra, 2015. "Earning the right premium on the right factor in portfolio planning," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 367-383.
    14. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    15. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    16. Giuseppe Di Graziano & L. C. G. Rogers, 2009. "Equity with Markov-modulated dividends," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 19-26.
    17. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    18. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    19. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    20. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    21. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Event risk; Regime switching; Defaultable bonds; Jump processes; Optimal investment and consumption; Stochastic control;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:51:y:2012:i:3:p:551-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.