IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v36y2005i3p433-440.html
   My bibliography  Save this article

Controlled risk processes in discrete time: Lower and upper approximations to the optimal probability of ruin

Author

Listed:
  • Groniowska, Agnieszka
  • Niemiro, Wojciech

Abstract

No abstract is available for this item.

Suggested Citation

  • Groniowska, Agnieszka & Niemiro, Wojciech, 2005. "Controlled risk processes in discrete time: Lower and upper approximations to the optimal probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 433-440, June.
  • Handle: RePEc:eee:insuma:v:36:y:2005:i:3:p:433-440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(05)00042-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
    2. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    3. Gajek, Leslaw, 2005. "On the deficit distribution when ruin occurs--discrete time model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 13-24, February.
    4. Dickson, D. C. M., 2001. "Lundberg Approximations for Compound Distributions with Insurance Applications. By G. E. Willmot and X. S. Lin. (Springer, 2000)," British Actuarial Journal, Cambridge University Press, vol. 7(4), pages 690-691, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Landriault, David & Li, Bin & Loke, Sooie-Hoe & Willmot, Gordon E. & Xu, Di, 2017. "A note on the convexity of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 1-6.
    3. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    4. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    5. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    6. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    7. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    8. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    9. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    10. Vierkötter, Matthias & Schmidli, Hanspeter, 2017. "On optimal dividends with exponential and linear penalty payments," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 265-270.
    11. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    12. Psarrakos, Georgios, 2010. "On the DFR property of the compound geometric distribution with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 428-433, December.
    13. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    14. J. Cerda-Hernandez & A. Sikov, 2022. "Optimal investment strategy to maximize the expected utility of an insurance company under Cramer Lundberg dynamic," Papers 2207.02947, arXiv.org.
    15. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    16. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    17. El Attar Abderrahim & El Hachloufi Mostafa & Guennoun Zine El Abidine, 2017. "An Inclusive Criterion For An Optimal Choice Of Reinsurance," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-22, December.
    18. Yangyang Li & Zhenghan Chen & Yang Wang & Licheng Jiao & Yu Xue, 2017. "A Novel Distributed Quantum-Behaved Particle Swarm Optimization," Journal of Optimization, Hindawi, vol. 2017, pages 1-9, May.
    19. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    20. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:36:y:2005:i:3:p:433-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.