IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v36y2005i3p433-440.html
   My bibliography  Save this article

Controlled risk processes in discrete time: Lower and upper approximations to the optimal probability of ruin

Author

Listed:
  • Groniowska, Agnieszka
  • Niemiro, Wojciech

Abstract

No abstract is available for this item.

Suggested Citation

  • Groniowska, Agnieszka & Niemiro, Wojciech, 2005. "Controlled risk processes in discrete time: Lower and upper approximations to the optimal probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 433-440, June.
  • Handle: RePEc:eee:insuma:v:36:y:2005:i:3:p:433-440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(05)00042-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
    2. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    3. Gajek, Leslaw, 2005. "On the deficit distribution when ruin occurs--discrete time model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 13-24, February.
    4. Dickson, D. C. M., 2001. "Lundberg Approximations for Compound Distributions with Insurance Applications. By G. E. Willmot and X. S. Lin. (Springer, 2000)," British Actuarial Journal, Cambridge University Press, vol. 7(4), pages 690-691, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    3. Landriault, David & Li, Bin & Loke, Sooie-Hoe & Willmot, Gordon E. & Xu, Di, 2017. "A note on the convexity of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 1-6.
    4. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    5. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    6. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    7. Søren Asmussen & Pierre Fiorini & Lester Lipsky & Tomasz Rolski & Robert Sheahan, 2008. "Asymptotic Behavior of Total Times for Jobs That Must Start Over if a Failure Occurs," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 932-944, November.
    8. Sanguesa, C., 2006. "Approximations of ruin probabilities in mixed Poisson models with lattice claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 69-80, August.
    9. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    10. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    11. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    12. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    13. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    14. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    15. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    16. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    17. Haiying Zhou & Huainian Zhu, 2024. "Optimal Reinsurance and Derivative-Based Investment Decisions for Insurers with Mean-Variance Preference," Mathematics, MDPI, vol. 12(13), pages 1-20, June.
    18. Vierkötter, Matthias & Schmidli, Hanspeter, 2017. "On optimal dividends with exponential and linear penalty payments," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 265-270.
    19. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    20. Psarrakos, Georgios, 2010. "On the DFR property of the compound geometric distribution with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 428-433, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:36:y:2005:i:3:p:433-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.