IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v121y2025icp45-62.html
   My bibliography  Save this article

Insurance loss modeling with gradient tree-boosted mixture models

Author

Listed:
  • Hou, Yanxi
  • Li, Jiahong
  • Gao, Guangyuan

Abstract

In actuarial practice, finite mixture model is one widely applied statistical method to model the insurance loss. Although the Expectation-Maximization (EM) algorithm usually plays an essential tool for the parameter estimation of mixture models, it suffers from other issues which cause unstable predictions. For example, feature engineering and variable selection are two crucial modeling issues that are challenging for mixture models as they involve several component models. Avoiding overfitting is another technical concern of the modeling method for the prediction of future losses. To address those issues, we propose an Expectation-Boosting (EB) algorithm, which implements the gradient boosting decision trees to adaptively increase the likelihood in the second step. Our proposed EB algorithm can estimate both the mixing probabilities and the component parameters non-parametrically and overfitting-sensitively, and further perform automated feature engineering, model fitting, and variable selection simultaneously, which fully explores the predictive power of feature space. Moreover, the proposed algorithm can be combined with parallel computation methods to improve computation efficiency. Finally, we conduct two simulation studies to show the good performance of the proposed algorithm and an empirical analysis of the claim amounts for illustration.

Suggested Citation

  • Hou, Yanxi & Li, Jiahong & Gao, Guangyuan, 2025. "Insurance loss modeling with gradient tree-boosted mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 45-62.
  • Handle: RePEc:eee:insuma:v:121:y:2025:i:c:p:45-62
    DOI: 10.1016/j.insmatheco.2024.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872400132X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:121:y:2025:i:c:p:45-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.