IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v120y2025icp91-106.html
   My bibliography  Save this article

Hidden semi-Markov models for rainfall-related insurance claims

Author

Listed:
  • Shi, Yue
  • Punzo, Antonio
  • Otneim, Håkon
  • Maruotti, Antonello

Abstract

We analyze the temporal structure of a novel insurance dataset about home insurance claims related to rainfall-induced damage in Norway and employ a hidden semi-Markov model (HSMM) to capture the non-Gaussian nature and temporal dynamics of these claims. By examining a broad range of candidate sojourn and emission distributions and assessing the goodness-of-fit and commonly used risk measures of the corresponding HSMM, we identify an appropriate model for effectively representing insurance losses caused by rainfall-related incidents. Our findings highlight the importance of considering the temporal aspects of weather-related insurance claims and demonstrate that the proposed HSMM adeptly captures this feature. Moreover, the model estimates reveal a concerning trend: the risks associated with heavy rain in the context of home insurance have exhibited an upward trajectory between 2004 and 2020, aligning with the evidence of a changing climate. This insight has significant implications for insurance companies, providing them with valuable information for accurate and robust modeling in the face of climate uncertainties. By shedding light on the evolving risks related to heavy rain and their impact on home insurance, our study offers essential insights for insurance companies to adapt their strategies and effectively manage these emerging challenges. It underscores the necessity of incorporating climate change considerations into insurance models and emphasizes the importance of continuously monitoring and reassessing risk levels associated with rainfall-induced damage. Ultimately, our research contributes to the broader understanding of climate risk in the insurance industry and supports the development of resilient and sustainable insurance practices.

Suggested Citation

  • Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2025. "Hidden semi-Markov models for rainfall-related insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 91-106.
  • Handle: RePEc:eee:insuma:v:120:y:2025:i:c:p:91-106
    DOI: 10.1016/j.insmatheco.2024.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724001136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Mixtures; Non-Gaussian distributions; EM algorithm; Risk measures; Rainfall data;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:120:y:2025:i:c:p:91-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.