IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v108y2023icp156-164.html
   My bibliography  Save this article

Inf-convolution and optimal allocations for mixed-VaRs

Author

Listed:
  • Xia, Zichao
  • Zou, Zhenfeng
  • Hu, Taizhong

Abstract

A mixed Value-at-Risk (VaR) is a two-parameter quantile-based risk measure, which is a convex combination of left-VaR and right-VaR. In this paper, we investigate optimal allocations in a risk sharing problem where the objectives of agents are mixed-VaRs. Explicit formulas of the inf-convolution and Pareto optimal allocations are obtained. The worst-case mixed VaR under model uncertainty is also presented.

Suggested Citation

  • Xia, Zichao & Zou, Zhenfeng & Hu, Taizhong, 2023. "Inf-convolution and optimal allocations for mixed-VaRs," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 156-164.
  • Handle: RePEc:eee:insuma:v:108:y:2023:i:c:p:156-164
    DOI: 10.1016/j.insmatheco.2022.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872200124X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    2. Paul Embrechts & Haiyan Liu & Tiantian Mao & Ruodu Wang, 2017. "Quantile-Based Risk Sharing with Heterogeneous Beliefs," Swiss Finance Institute Research Paper Series 17-65, Swiss Finance Institute, revised Jan 2018.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    4. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    5. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    6. Beatrice Acciaio, 2007. "Optimal risk sharing with non-monotone monetary functionals," Finance and Stochastics, Springer, vol. 11(2), pages 267-289, April.
    7. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    8. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    9. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    10. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
    13. repec:dau:papers:123456789/361 is not listed on IDEAS
    14. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    15. Damir Filipović & Gregor Svindland, 2008. "Optimal capital and risk allocations for law- and cash-invariant convex functions," Finance and Stochastics, Springer, vol. 12(3), pages 423-439, July.
    16. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    17. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    18. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    2. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Pairwise counter-monotonicity," Papers 2302.11701, arXiv.org, revised May 2023.
    3. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    4. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    2. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    3. Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
    4. Felix-Benedikt Liebrich, 2021. "Risk sharing under heterogeneous beliefs without convexity," Papers 2108.05791, arXiv.org, revised May 2022.
    5. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    6. Alessandro Doldi & Marco Frittelli, 2019. "Multivariate Systemic Optimal Risk Transfer Equilibrium," Papers 1912.12226, arXiv.org, revised Oct 2021.
    7. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    8. Peng Liu & Andreas Tsanakas & Yunran Wei, 2024. "Risk sharing with Lambda value at risk under heterogeneous beliefs," Papers 2408.03147, arXiv.org, revised Sep 2024.
    9. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    10. Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2019. "Systemic Optimal Risk Transfer Equilibrium," Papers 1907.04257, arXiv.org, revised Jun 2020.
    11. Claudia Ravanelli & Gregor Svindland, 2014. "Comonotone Pareto optimal allocations for law invariant robust utilities on L 1," Finance and Stochastics, Springer, vol. 18(1), pages 249-269, January.
    12. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    13. Rose-Anne Dana & Cuong Le Van, 2008. "No-arbitrage, overlapping sets of priors and the existence of efficient allocations and equilibria in the presence of risk and ambiguity," Documents de travail du Centre d'Economie de la Sorbonne b08039, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Nov 2009.
    14. Liu, Haiyan & Mao, Tiantian, 2022. "Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 393-417.
    15. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    16. Pazdera, Jaroslav & Schumacher, Johannes M. & Werker, Bas J.M., 2017. "The composite iteration algorithm for finding efficient and financially fair risk-sharing rules," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 122-133.
    17. Hirbod Assa & Peng Liu, 2024. "Factor risk measures," Papers 2404.08475, arXiv.org.
    18. Svindland Gregor, 2009. "Subgradients of law-invariant convex risk measures on L," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 169-199, December.
    19. Felix-Benedikt Liebrich & Gregor Svindland, 2018. "Risk sharing for capital requirements with multidimensional security markets," Papers 1809.10015, arXiv.org.
    20. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.

    More about this item

    Keywords

    Quantile; Risk measure; Risk sharing; Model uncertainty;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:108:y:2023:i:c:p:156-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.