IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v54y2020ics0268401219312526.html
   My bibliography  Save this article

Using a Heuristic-Systematic Model to assess the Twitter user profile’s impact on disaster tweet credibility

Author

Listed:
  • Son, Jaebong
  • Lee, Jintae
  • Oh, Onook
  • Lee, Hyung Koo
  • Woo, Jiyoung

Abstract

Journalists, emergency responders, and the general public use Twitter during disasters as an effective means to disseminate emergency information. However, there is a growing concern about the credibility of disaster tweets. This concern negatively influences Twitter users’ decisions about whether to retweet information, which can delay the dissemination of accurate—and sometimes essential—communications during a crisis. Although verifying information credibility is often a time-consuming task requiring considerable cognitive effort, researchers have yet to explore how people manage this task while using Twitter during disaster situations.

Suggested Citation

  • Son, Jaebong & Lee, Jintae & Oh, Onook & Lee, Hyung Koo & Woo, Jiyoung, 2020. "Using a Heuristic-Systematic Model to assess the Twitter user profile’s impact on disaster tweet credibility," International Journal of Information Management, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219312526
    DOI: 10.1016/j.ijinfomgt.2020.102176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401219312526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2020.102176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Liu & Wang, Yawei & Mou, Jian, 2024. "Enjoy to read and enjoy to shop: An investigation on the impact of product information presentation on purchase intention in digital content marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    2. Wang, Di & Lu, Jiahui & Zhong, Ying, 2023. "Futile or fertile? The effect of persuasive strategies on citizen engagement in COVID-19 vaccine-related tweets across six national health departments," Social Science & Medicine, Elsevier, vol. 317(C).
    3. Wang, Dongyi & Luo, Xin (Robert) & Hua, Ying & Benitez, Jose, 2023. "Customers’ help-seeking propensity and decisions in brands’ self-built live streaming E-Commerce: A mixed-methods and fsQCA investigation from a dual-process perspective," Journal of Business Research, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219312526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.