IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v51y2020ics0268401219306012.html
   My bibliography  Save this article

Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach

Author

Listed:
  • Leong, Lai-Ying
  • Hew, Teck-Soon
  • Ooi, Keng-Boon
  • Wei, June

Abstract

The advancement in mobile technology has enabled the application of the mobile wallet or m-wallet as an innovative payment method to substitute the traditional functions of the physical wallet. However, because of pro-innovation bias, scholars have a focus on the adoption of technology and very little attention has been given to the resistance of innovation, especially in the m-wallet context. This study addressed this absence by examining the inhibitors of m-wallet innovation adoption through the lens of innovation resistance theory (IRT). By applying a sophisticated two-staged structural equation modeling-artificial neural network (SEM-ANN) approach, we successfully extended the IRT by integrating socio-demographics and perceived novelty. The study has unveiled the noncompensatory and nonlinear relationships between the predictors and m-wallet resistance. Significant predictors from SEM analysis were taken as the ANN model’s input neurons. According to the normalized importance obtained from the multilayer perceptrons of the feed-forward-back-propagation ANN algorithm, we found significant effects of education, income, usage barrier, risk barrier, value barrier, tradition barrier, and perceived novelty on m-wallet innovation resistance. The ANN model can predict m-wallet innovation resistance with an accuracy of 76.4 %. We also discussed several new and useful theoretical and practical implications for reducing m-wallet innovation resistance among consumers.

Suggested Citation

  • Leong, Lai-Ying & Hew, Teck-Soon & Ooi, Keng-Boon & Wei, June, 2020. "Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach," International Journal of Information Management, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:ininma:v:51:y:2020:i:c:s0268401219306012
    DOI: 10.1016/j.ijinfomgt.2019.102047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401219306012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.102047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:51:y:2020:i:c:s0268401219306012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.