IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v50y2020icp395-404.html
   My bibliography  Save this article

The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage

Author

Listed:
  • Ghasemaghaei, Maryam

Abstract

The number of firms that intend to invest in big data analytics has declined and many firms that invested in the use of these tools could not successfully deploy their project to production. In this study, we leverage the valence theory perspective to investigate the role of positive and negative valence factors on the impact of bigness of data on big data analytics usage within firms. The research model is validated empirically from 140 IT managers and data analysts using survey data. The results confirm the impact of bigness of data on both negative valence (i.e., data security concern and task complexity), and positive valence (i.e., data accessibility and data diagnosticity) factors. In addition, findings show that data security concern is not a critical factor in using big data analytics. The results also show that, interestingly, at different levels of data security concern, task complexity, data accessibility, and data diagnosticity, the impact of bigness of data on big data analytics use will be varied. For practitioners, the findings provide important guidelines to increase the extent of using big data analytics by considering both positive and negative valence factors.

Suggested Citation

  • Ghasemaghaei, Maryam, 2020. "The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage," International Journal of Information Management, Elsevier, vol. 50(C), pages 395-404.
  • Handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:395-404
    DOI: 10.1016/j.ijinfomgt.2018.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218302767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2018.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Showimy Aldossari & Umi Asma’ Mokhtar & Ahmad Tarmizi Abdul Ghani, 2023. "Factor Influencing the Adoption of Big Data Analytics: A Systematic Literature and Experts Review," SAGE Open, , vol. 13(4), pages 21582440231, December.
    2. Luqman, Adeel & Wang, Liangyu & Katiyar, Gagan & Agarwal, Reeti & Mohapatra, Amiya Kumar, 2024. "Unpacking associations between positive-negative valence and ambidexterity of big data. Implications for firm performance," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Nan Wang & Wenxuan Xie & Yalan Huang & Zhenzhong Ma, 2023. "Big Data capability and sustainability oriented innovation: The mediating role of intellectual capital," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5702-5720, December.
    4. Maryia Zaitsava & Elona Marku & Maria Chiara Guardo & Azar Shahgholian, 2023. "A fine-grained perspective on big data knowledge creation: dimensions, insights, and mechanism from a pilot study," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 547-573, June.
    5. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    6. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:395-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.