IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v49y2019icp546-556.html
   My bibliography  Save this article

A study on forecasting electricity production and consumption in smart cities and factories

Author

Listed:
  • Gellert, Arpad
  • Florea, Adrian
  • Fiore, Ugo
  • Palmieri, Francesco
  • Zanetti, Paolo

Abstract

The electrical power sector must undergo a thorough metamorphosis to achieve the ambitious targets in greenhouse gas reduction set forth in the Paris Agreement of 2015. Reducing uncertainty about demand and, in case of renewable electricity generation, supply is important for the determination of spot electricity prices. In this work we propose and evaluate a context-based technique to anticipate the electricity production and consumption in buildings. We focus on a household with photovoltaics and energy storage system. We analyze the efficiency of Markov chains, stride predictors and also their combination into a hybrid predictor in modelling the evolution of electricity production and consumption. All these methods anticipate electric power based on previous values. The main goal is to determine the best method and its optimal configuration which can be integrated into a (possibly hardware-based) intelligent energy management system. The role of such a system is to adjust and synchronize through prediction the electricity consumption and production in order to increase self-consumption, reducing thus the pressure over the power grid. The experiments performed on datasets collected from a real system show that the best evaluated predictor is the Markov chain configured with an electric power history of 100 values, a context of one electric power value and the interval size of 1.

Suggested Citation

  • Gellert, Arpad & Florea, Adrian & Fiore, Ugo & Palmieri, Francesco & Zanetti, Paolo, 2019. "A study on forecasting electricity production and consumption in smart cities and factories," International Journal of Information Management, Elsevier, vol. 49(C), pages 546-556.
  • Handle: RePEc:eee:ininma:v:49:y:2019:i:c:p:546-556
    DOI: 10.1016/j.ijinfomgt.2019.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218311368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dwivedi, Yogesh K. & Hughes, Laurie & Kar, Arpan Kumar & Baabdullah, Abdullah M. & Grover, Purva & Abbas, Roba & Andreini, Daniela & Abumoghli, Iyad & Barlette, Yves & Bunker, Deborah & Chandra Kruse,, 2022. "Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action," International Journal of Information Management, Elsevier, vol. 63(C).
    2. Bachici Miroslav-Andrei & Gellert Arpad, 2020. "Modeling Electricity Consumption and Production in Smart Homes using LSTM Networks," International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, Sciendo, vol. 10(1), pages 80-89, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:49:y:2019:i:c:p:546-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.