IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v4y2010i2p185-193.html
   My bibliography  Save this article

Subject clustering analysis based on ISI category classification

Author

Listed:
  • Zhang, Lin
  • Liu, Xinhai
  • Janssens, Frizo
  • Liang, Liming
  • Glänzel, Wolfgang

Abstract

The study focuses on the analysis of the information flow among the ISI subject categories and aims at finding an appropriate field structure of the Web of Science using the subject clustering algorithm developed in previous studies. The clustering journals and ISI subject categories provide two subject classification schemes through different perspectives and levels. The two clustering results have been compared and their accordance and divergence have been analyzed. Several indicators have been used to compare the communication characteristics among different ISI subject categories. The neighbour map of each category clearly reflects the affinities between the “core” category and its satellites around.

Suggested Citation

  • Zhang, Lin & Liu, Xinhai & Janssens, Frizo & Liang, Liming & Glänzel, Wolfgang, 2010. "Subject clustering analysis based on ISI category classification," Journal of Informetrics, Elsevier, vol. 4(2), pages 185-193.
  • Handle: RePEc:eee:infome:v:4:y:2010:i:2:p:185-193
    DOI: 10.1016/j.joi.2009.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157709000832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2009.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    2. Henry Small, 1999. "Visualizing science by citation mapping," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 50(9), pages 799-813.
    3. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    4. Loet Leydesdorff, 2006. "Can scientific journals be classified in terms of aggregated journal‐journal citation relations using the Journal Citation Reports?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(5), pages 601-613, March.
    5. Félix Moya-Anegón & Benjamín Vargas-Quesada & Victor Herrero-Solana & Zaida Chinchilla-Rodríguez & Elena Corera-Álvarez & Francisco J. Munoz-Fernández, 2004. "A new technique for building maps of large scientific domains based on the cocitation of classes and categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 129-145, September.
    6. Patrick Doreian & Thomas J. Fararo, 1985. "Structural equivalence in a journal network," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 36(1), pages 28-37, January.
    7. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
    2. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    3. Shenghui Wang & Rob Koopman, 2017. "Clustering articles based on semantic similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1017-1031, May.
    4. Xinhai Liu & Wolfgang Glänzel & Bart Moor, 2012. "Optimal and hierarchical clustering of large-scale hybrid networks for scientific mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 473-493, May.
    5. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    6. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    7. Zhang, Lin & Thijs, Bart & Glänzel, Wolfgang, 2011. "The diffusion of H-related literature," Journal of Informetrics, Elsevier, vol. 5(4), pages 583-593.
    8. Tomaz Bartol & Gordana Budimir & Primoz Juznic & Karmen Stopar, 2016. "Mapping and classification of agriculture in Web of Science: other subject categories and research fields may benefit," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 979-996, November.
    9. Ashraf Uddin & Jaideep Bhoosreddy & Marisha Tiwari & Vivek Kumar Singh, 2016. "A Sciento-text framework to characterize research strength of institutions at fine-grained thematic area level," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1135-1150, March.
    10. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.
    11. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    12. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    13. Seiler, Christian & Wohlrabe, Klaus, 2013. "Archetypal scientists," Journal of Informetrics, Elsevier, vol. 7(2), pages 345-356.
    14. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    15. Rongying Zhao & Bikun Chen, 2014. "Applying author co-citation analysis to user interaction analysis: a case study on instant messaging groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 985-997, November.
    16. Yu-Wei Chang, 2019. "Are articles in library and information science (LIS) journals primarily contributed to by LIS authors?," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 81-104, October.
    17. Michael Gowanlock & Rich Gazan, 2013. "Assessing researcher interdisciplinarity: a case study of the University of Hawaii NASA Astrobiology Institute," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 133-161, January.
    18. Xiangfeng Meng & Xinhai Liu & YunHai Tong & Wolfgang Glänzel & Shaohua Tan, 2015. "Multi-view clustering with exemplars for scientific mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1527-1552, December.
    19. Shir Aviv-Reuven & Ariel Rosenfeld, 2023. "A logical set theory approach to journal subject classification analysis: intra-system irregularities and inter-system discrepancies in Web of Science and Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 157-175, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    3. Xie, Yundong & Wu, Qiang & Zhang, Peng & Li, Xingchen, 2020. "Information Science and Library Science (IS-LS) journal subject categorisation and comparison based on editorship information," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    5. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    6. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.
    7. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    8. Li, Yunrong & Ruiz-Castillo, Javier, 2013. "The comparison of normalization procedures based on different classification systems," Journal of Informetrics, Elsevier, vol. 7(4), pages 945-958.
    9. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    10. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    11. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    12. Leydesdorff, Loet & Rafols, Ismael, 2012. "Interactive overlays: A new method for generating global journal maps from Web-of-Science data," Journal of Informetrics, Elsevier, vol. 6(2), pages 318-332.
    13. Perianes-Rodriguez, Antonio & Ruiz-Castillo, Javier, 2017. "A comparison of the Web of Science and publication-level classification systems of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 32-45.
    14. Rosa Rodriguez-Sánchez & J. A. García & J. Fdez-Valdivia, 2014. "Evolutionary games between subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 869-888, October.
    15. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    16. Yu-Wei Chang, 2019. "Are articles in library and information science (LIS) journals primarily contributed to by LIS authors?," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 81-104, October.
    17. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    18. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    19. Lin Zhang & Frizo Janssens & Liming Liang & Wolfgang Glänzel, 2010. "Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 687-706, March.
    20. Mario Coccia & Barry Bozeman, 2016. "Allometric models to measure and analyze the evolution of international research collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1065-1084, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:4:y:2010:i:2:p:185-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.