IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v2y2008i1p101-105.html
   My bibliography  Save this article

Some comments on “The estimation of lost multi-copy documents: A new type of informetrics theory” by Egghe and Proot

Author

Listed:
  • Burrell, Quentin L.

Abstract

Egghe and Proot [Egghe, L., & Proot, G. (2007). The estimation of the number of lost multi-copy documents: A new type of informetrics theory. Journal of Informetrics] introduce a simple probabilistic model to estimate the number of lost multi-copy documents based on the numbers of retrieved ones. We show that their model in practice can essentially be described by the well-known Poisson approximation to the binomial. This enables us to adopt a traditional maximum likelihood estimation (MLE) approach which allows the construction of (approximate) confidence intervals for the parameters of interest, thereby resolving an open problem left by the authors. We further show that the general estimation problem is a variant of a well-known unseen species problem. This work should be viewed as supplementing that of Egghe and Proot [Egghe, L., & Proot, G. (2007). The estimation of the number of lost multi-copy documents: A new type of informetrics theory. Journal of Informetrics]. It turns out that their results are broadly in line with those produced by this rather more robust statistical analysis.

Suggested Citation

  • Burrell, Quentin L., 2008. "Some comments on “The estimation of lost multi-copy documents: A new type of informetrics theory” by Egghe and Proot," Journal of Informetrics, Elsevier, vol. 2(1), pages 101-105.
  • Handle: RePEc:eee:infome:v:2:y:2008:i:1:p:101-105
    DOI: 10.1016/j.joi.2007.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157707000570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2007.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quentin L. Burrell, 2003. "The sample size dependency of statistical measures in informetrics? Some comments," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(11), pages 1076-1077, September.
    2. Egghe, L. & Proot, G., 2007. "The estimation of the number of lost multi-copy documents: A new type of informetrics theory," Journal of Informetrics, Elsevier, vol. 1(4), pages 257-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:2:y:2008:i:1:p:101-105. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.