Author
Listed:
- Wang, Zhongyi
- Zhang, Haoxuan
- Chen, Jiangping
- Chen, Haihua
Abstract
Novelty is a critical characteristic of innovative scientific articles, and accurately identifying novelty can facilitate the early detection of scientific breakthroughs. However, existing methods for measuring novelty have two main limitations: (1) Metadata-based approaches, such as citation analysis, are retrospective and do not alleviate the pressures of the peer review process or enable timely tracking of scientific progress; (2) Content-based methods have not adequately addressed the inherent uncertainty between the qualitative concept of novelty and the textual representation of papers. To address these issues, we propose a practical and effective framework for measuring the novelty of scientific articles through integrated topic modeling and cloud model, referred to as MNSA-ITMCM. In this framework, papers are represented as topic combinations, and novelty is reflected in the organic reorganization of these topics. We use the BERTopic model to generate semantically informed topics, and then apply a topic selection algorithm based on maximum marginal relevance to obtain a topic combination that balances similarity and diversity. Furthermore, we leverage the cloud model from fuzzy mathematics to quantify novelty, overcoming the uncertainty inherent in natural language expression and topic modeling to improve the accuracy of novelty measurement. To validate the effectiveness of our framework, we conducted empirical evaluations on papers from the Cell 2021 journal (biomedical domain) and the ICLR 2023 conference (computer science domain). Through correlation analysis and prediction error analysis, our framework demonstrated the ability to identify different types of novel papers and accurately predict their novelty levels. The proposed framework is applicable across diverse scientific disciplines and publication venues, benefiting researchers, librarians, science evaluation agencies, policymakers, and funding organizations by improving the efficiency and comprehensiveness of identifying novelty research.
Suggested Citation
Wang, Zhongyi & Zhang, Haoxuan & Chen, Jiangping & Chen, Haihua, 2024.
"An effective framework for measuring the novelty of scientific articles through integrated topic modeling and cloud model,"
Journal of Informetrics, Elsevier, vol. 18(4).
Handle:
RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000993
DOI: 10.1016/j.joi.2024.101587
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000993. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.