IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i4s1751157724000956.html
   My bibliography  Save this article

A framework armed with node dynamics for predicting technology convergence

Author

Listed:
  • Yang, Guancan
  • Xing, Jiaxin
  • Xu, Shuo
  • Zhao, Yuntian

Abstract

In the rapidly evolving landscape of industrial and societal progress, technology convergence plays a pivotal role. This dynamic process is usually characterized by the emergence of new nodes and new links. With the long-term and recent interests in predicting technology convergence, link prediction has become the primary approach on the basis of large-scale patent data. Though, the problem of node dynamics is still not addressed in the literature. For this purpose, this paper presents a technology convergence prediction framework with three core modules as follows. (1) A candidate node set is introduced during the network construction phase, mimicking the generation of newly-emerging nodes. (2) An inductive graph representation learning approach is deployed to generate feature vectors for newly-emerging nodes as well as existing ones. (3) The evaluation criteria are revised to shift from the predictable range to the actual predicted range, which can provide a more realistic assessment of predictive performance. Finally, experimental results on the domain of cancer drug development validate the feasibility and effectiveness of our framework in capturing the dynamics of technology convergence, especially concerning the relationships of newly emerged nodes and links. This study provides valuable insights into technology convergence dynamics and points to future research and applications.

Suggested Citation

  • Yang, Guancan & Xing, Jiaxin & Xu, Shuo & Zhao, Yuntian, 2024. "A framework armed with node dynamics for predicting technology convergence," Journal of Informetrics, Elsevier, vol. 18(4).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000956
    DOI: 10.1016/j.joi.2024.101583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.