Author
Listed:
- Zheng, Zhejun
- Ma, Yaxue
- Ba, Zhichao
- Pei, Lei
Abstract
Measuring the knowledge linkage between science and technology (S&T) is crucial for understanding the interactions between S&T and assisting decision-makers in strategizing research and development investments. Conventional analyses of S&T knowledge linkage have frequently overlooked the semantic structure of knowledge elements thereby introducing biases in the measurements. To address this issue, this study introduces a novel method predicated on the tree semantic structure, which quantifies the S&T linkage by considering the hierarchy and category of knowledge elements within an ontological framework. In this method, knowledge trees are constructed to represent the core knowledge of S&T literature, incorporating hierarchically organized MeSH descriptors. These knowledge trees are subsequently utilized to measure the knowledge linkage between S&T by integrating intra-branch knowledge similarity and inter-branch knowledge distribution. An empirical analysis was conducted on a substantial corpus of scientific publications and patents within the biomedicine sector. The findings predominantly revealed a stronger knowledge linkage between S&T in recent years, relative to the early 2000 s. It was also observed that patents are more inclined to include broader concepts in their titles and abstracts, in contract to the more specific concepts found in scientific publications. S&T literatures have increasingly focused on knowledge related to diseases, equipment, and health care. To verify the reliability of the proposed method, validation was performed with alternative measurements of knowledge linkage. In comparison to single-feature-based linkage measurements and network-based approaches, our proposed method demonstrates superior adaptability in capturing S&T linkage, especially when there is a marked disparity in the sample sizes of S&T literature. This study not only enriches the measurements of S&T knowledge linkage, but also furnishes empirical insights into the evolving patterns of S&T linkage within the biomedical domain.
Suggested Citation
Zheng, Zhejun & Ma, Yaxue & Ba, Zhichao & Pei, Lei, 2024.
"Tree knowledge structure for better insight: Capturing biomedical science-technology knowledge linkage with MeSH,"
Journal of Informetrics, Elsevier, vol. 18(4).
Handle:
RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000816
DOI: 10.1016/j.joi.2024.101568
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000816. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.