IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i4s1751157724000701.html
   My bibliography  Save this article

A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network

Author

Listed:
  • Xu, Shuo
  • Ma, Xinyi
  • Wang, Hong
  • An, Xin
  • Li, Ling

Abstract

In the procedure of exploring science-technology linkages, non-patent literature (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.

Suggested Citation

  • Xu, Shuo & Ma, Xinyi & Wang, Hong & An, Xin & Li, Ling, 2024. "A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network," Journal of Informetrics, Elsevier, vol. 18(4).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000701
    DOI: 10.1016/j.joi.2024.101557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.