IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v46y2024ics1874548224000398.html
   My bibliography  Save this article

Probabilistic dynamic resilience quantification for infrastructure systems in multi-hazard environments

Author

Listed:
  • Badr, Ahmed
  • Li, Zoe
  • El-Dakhakhni, Wael

Abstract

Resilience has been evolving as a key criterion for infrastructure systems as it ensures the system's dynamic performance pre-, during, and post-hazard disruptions. However, estimating these performances is challenging due to system and operation complexities, and the probabilistic dynamic nature of infrastructure system. Moreover, infrastructure systems are usually exposed to multi-hazard environments, with their own probabilistic behavior, leading to additional complexity in terms of estimating the system response and, subsequently, the overall system resilience. As such, this study develops a probabilistic resilience-centric system dynamics modeling approach to quantify infrastructure dynamic resilience based on a holistic representation of infrastructure systems under multi-hazard scenarios, whereby the probabilistic natures of both the hazards and system are incorporated. Unlike the traditional resilience quantification approaches that represent system resilience by a single value calculated after the system's full recovery, the developed model focuses on tracking the temporal evolution of system resilience along the entire period of system performance deterioration and recovery. A real-world hydropower dam, as an example for infrastructure systems, in British Columbia, Canada is used as a demonstration application to show model utility in developing resilience-guided assessment plans for infrastructure systems. Overall, the developed approach empowers the decision-makers with insights into critical operational periods, the required time to reach specified resilience targets, and the efficiency of risk mitigation measures in real-time.

Suggested Citation

  • Badr, Ahmed & Li, Zoe & El-Dakhakhni, Wael, 2024. "Probabilistic dynamic resilience quantification for infrastructure systems in multi-hazard environments," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
  • Handle: RePEc:eee:ijocip:v:46:y:2024:i:c:s1874548224000398
    DOI: 10.1016/j.ijcip.2024.100698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erma Suryani & Rully A. Hendrawan & Philip F.E. Adipraja & Arif Wibisono & Basuki Widodo & Rarasmaya Indraswari, 2020. "Modelling and simulation of transportation system effectiveness to reduce traffic congestion: a system dynamics framework," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(7), pages 670-697, October.
    2. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    3. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    4. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Alkhaleel, Basem A., 2024. "Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    4. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    5. Mendonça, David & Wallace, William A., 2015. "Factors underlying organizational resilience: The case of electric power restoration in New York City after 11 September 2001," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 83-91.
    6. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    8. Edward J. Oughton, 2021. "The Economic Impact of Critical National Infrastructure Failure Due to Space Weather," Papers 2106.08945, arXiv.org.
    9. Kong, Jingjing & Zhang, Chao & Simonovic, Slobodan P., 2021. "Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    11. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    12. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    13. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Dikshit, Saransh & Dobson, Ian & Alipour, Alice, 2024. "Cascading structural failures of towers in an electric power transmission line due to straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    16. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    18. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Shihab Uddin & Qing Lu & Hung Nguyen, 2021. "Truck Impact on Buried Water Pipes in Interdependent Water and Road Infrastructures," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    20. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:46:y:2024:i:c:s1874548224000398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.