IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v20y2018icp28-47.html
   My bibliography  Save this article

Nationwide critical infrastructure monitoring using a common operating picture framework

Author

Listed:
  • Puuska, Samir
  • Rummukainen, Lauri
  • Timonen, Jussi
  • Lääperi, Lauri
  • Klemetti, Markus
  • Oksama, Lauri
  • Vankka, Jouko

Abstract

This paper describes the efforts involved in designing a common operating picture system for monitoring large-scale critical infrastructures. The design leverages the Joint Directors of Laboratories (JDL) data fusion model to enable the integration of different critical infrastructure systems with their dependency relations. The resulting Situational Awareness of Critical Infrastructure and Networks (SACIN) framework offers a platform that provides a common operating picture of a critical infrastructure. A generic data collection component customized to each source system generates events and facilitates JDL level 0 integration. An analysis component collects events and data to produce meaningful information about the current state and future impact estimates in accordance with JDL levels 1 to 3. A brokered architecture supports level 4 control by various components and a JDL level 5 user interface is offered via a web application. Interviews of infrastructure subject matter experts were conducted to obtain the situational awareness requirements. By applying key situational awareness oriented design principles to the situational awareness requirements, a user interface was created for organizing information based on operator situational awareness needs and supporting key cognitive mechanisms that transform data into high levels of situational awareness. Situational awareness measures were used to assess operator performance during critical infrastructure tasks – a “freeze-probe” recall approach (Situational Awareness Global Assessment Technique (SAGAT)), a post-trial subjective rating approach (Situational Awareness Rating Technique (SART)) and the System Usability Scale (SUS). The results indicate that the supply of attentional resources (SART supply) and overall SAGAT score best predict the performance levels of operators.

Suggested Citation

  • Puuska, Samir & Rummukainen, Lauri & Timonen, Jussi & Lääperi, Lauri & Klemetti, Markus & Oksama, Lauri & Vankka, Jouko, 2018. "Nationwide critical infrastructure monitoring using a common operating picture framework," International Journal of Critical Infrastructure Protection, Elsevier, vol. 20(C), pages 28-47.
  • Handle: RePEc:eee:ijocip:v:20:y:2018:i:c:p:28-47
    DOI: 10.1016/j.ijcip.2017.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548215300305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2017.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebrahim Bagheri & Ali A. Ghorbani, 2010. "UML-CI: A reference model for profiling critical infrastructure systems," Information Systems Frontiers, Springer, vol. 12(2), pages 115-139, April.
    2. Marrone, Stefano & Nardone, Roberto & Tedesco, Annarita & D'Amore, Pasquale & Vittorini, Valeria & Setola, Roberto & De Cillis, Francesca & Mazzocca, Nicola, 2013. "Vulnerability modeling and analysis for critical infrastructure protection applications," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(3), pages 217-227.
    3. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
    2. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    3. Seppänen, Hannes & Luokkala, Pekka & Zhang, Zhe & Torkki, Paulus & Virrantaus, Kirsi, 2018. "Critical infrastructure vulnerability—A method for identifying the infrastructure service failure interdependencies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 25-38.
    4. Nan, Cen & Sansavini, Giovanni, 2015. "Multilayer hybrid modeling framework for the performance assessment of interdependent critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 18-33.
    5. Palleti, Venkata Reddy & Joseph, Jude Victor & Silva, Arlindo, 2018. "A contribution of axiomatic design principles to the analysis and impact of attacks on critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 21-32.
    6. Gentile, U. & Marrone, S. & Nardone, R. & Bellini, E., 2020. "Computer-aided security assessment of water networks monitoring platforms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    7. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    8. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    9. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Dikshit, Saransh & Dobson, Ian & Alipour, Alice, 2024. "Cascading structural failures of towers in an electric power transmission line due to straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    12. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Shihab Uddin & Qing Lu & Hung Nguyen, 2021. "Truck Impact on Buried Water Pipes in Interdependent Water and Road Infrastructures," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    15. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    16. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    18. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    19. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    20. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:20:y:2018:i:c:p:28-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.