IDEAS home Printed from https://ideas.repec.org/a/eee/ijoais/v46y2022ics1467089522000227.html
   My bibliography  Save this article

Continuous monitoring with machine learning and interactive data visualization: An application to a healthcare payroll process

Author

Listed:
  • Zhang, Guangyue
  • Atasoy, Hilal
  • Vasarhelyi, Miklos A.

Abstract

This paper presents a framework for proactive and intelligent continuous control monitoring (CCM) that helps management gain higher assurance over business processes and alleviate information overload. We adopt a design science approach towards systematically developing CCM artifacts, including operation and internal control violation display and multidimensional anomaly detection. We illustrate the design with an implementation project whereby a CPA firm, the firm's healthcare sector client, and the research team work together to improve the assurance provided by payroll reviews. This study contributes to the CCM literature by envisioning that interactive data visualization and machine learning technologies can alleviate information overload for management in CCM. Second, we provide real-world evidence on the improvement brought to economic and behavioral aspects of the control monitoring process compared to the traditional approach. We show that emerging technologies substantially improve the efficiency and effectiveness of risk assessment, anomaly detection, and loss prevention. We also contribute to control monitoring practice by providing guidance on artifact development and application for practitioners to follow.

Suggested Citation

  • Zhang, Guangyue & Atasoy, Hilal & Vasarhelyi, Miklos A., 2022. "Continuous monitoring with machine learning and interactive data visualization: An application to a healthcare payroll process," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
  • Handle: RePEc:eee:ijoais:v:46:y:2022:i:c:s1467089522000227
    DOI: 10.1016/j.accinf.2022.100570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1467089522000227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.accinf.2022.100570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Cheng & Beng Wee Goh & Jae B. Kim, 2018. "Internal Control and Operational Efficiency," Contemporary Accounting Research, John Wiley & Sons, vol. 35(2), pages 1102-1139, June.
    2. Vasarhelyi, Miklos A. & Alles, Michael & Kuenkaikaew, Siripan & Littley, James, 2012. "The acceptance and adoption of continuous auditing by internal auditors: A micro analysis," International Journal of Accounting Information Systems, Elsevier, vol. 13(3), pages 267-281.
    3. Chan, David Y. & Vasarhelyi, Miklos A., 2011. "Innovation and practice of continuous auditing," International Journal of Accounting Information Systems, Elsevier, vol. 12(2), pages 152-160.
    4. Markus Goldstein & Seiichi Uchida, 2016. "A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fábio Albuquerque & Paula Gomes Dos Santos, 2023. "Recent Trends in Accounting and Information System Research: A Literature Review Using Textual Analysis Tools," FinTech, MDPI, vol. 2(2), pages 1-27, April.
    2. Fekadu Agmas Wassie & László Péter Lakatos, 2024. "Artificial intelligence and the future of the internal audit function," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tung-Hsien Wu & Shi-Ming Huang & Shaio Yan Huang & David C. Yen, 2017. "The effect of competencies, team problem-solving ability, and computer audit activity on internal audit performance," Information Systems Frontiers, Springer, vol. 19(5), pages 1133-1148, October.
    2. Andrea Cardoni & Evgeniia Kiseleva & Francesco De Luca, 2020. "Continuous auditing and data mining for strategic risk control and anticorruption: Creating “fair” value in the digital age," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3072-3085, December.
    3. Eid M. Alotaibi, 2023. "A Conceptual Model of Continuous Government Auditing Using Blockchain-Based Smart Contracts," International Journal of Business and Management, Canadian Center of Science and Education, vol. 17(11), pages 1-1, February.
    4. Farkas, Maia & Murthy, Uday S., 2014. "Nonprofessional investors' perceptions of the incremental value of continuous auditing and continuous controls monitoring: An experimental investigation," International Journal of Accounting Information Systems, Elsevier, vol. 15(2), pages 102-121.
    5. Fábio Albuquerque & Paula Gomes Dos Santos, 2023. "Recent Trends in Accounting and Information System Research: A Literature Review Using Textual Analysis Tools," FinTech, MDPI, vol. 2(2), pages 1-27, April.
    6. Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.
    7. Rikhardsson, Pall & Dull, Richard, 2016. "An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses," International Journal of Accounting Information Systems, Elsevier, vol. 20(C), pages 26-37.
    8. Tung-Hsien Wu & Shi-Ming Huang & Shaio Yan Huang & David C. Yen, 0. "The effect of competencies, team problem-solving ability, and computer audit activity on internal audit performance," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
    9. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    10. Gonzalez, George C. & Sharma, Pratyush N. & Galletta, Dennis F., 2012. "The antecedents of the use of continuous auditing in the internal auditing context," International Journal of Accounting Information Systems, Elsevier, vol. 13(3), pages 248-262.
    11. Wasswa Asaph Senoga, 2023. "The Effect of Accountability, Transparency, And Integrity of Church Leaders on Fraud Prevention in The Management of Church Funds," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(1), pages 1388-1409, January.
    12. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    13. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    14. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    15. Sojung Lucia Kim & Thompson S.H. Teo & Anol Bhattacherjee & Kichan Nam, 0. "IS auditor characteristics, audit process variables, and IS audit satisfaction: An empirical study in South Korea," Information Systems Frontiers, Springer, vol. 0, pages 1-15.
    16. Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019. "A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors," Monash Econometrics and Business Statistics Working Papers 1/19, Monash University, Department of Econometrics and Business Statistics.
    17. Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
    18. Elmira Asadi-Fard & Samereh Falahatkar & Mahdi Tanha Ziyarati & Xiaodong Zhang & Mariapia Faruolo, 2023. "Assessment of RXD Algorithm Capability for Gas Flaring Detection through OLI-SWIR Channels," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    19. Connelly, Brian L. & Shi, Wei & Cheng, Xin & Yin, Cheng, 2021. "Short Sellers: A screening theory perspective on B2B relationships," Journal of Business Research, Elsevier, vol. 134(C), pages 393-404.
    20. Kenichiro Nagata & Toshikazu Tsuji & Kimitaka Suetsugu & Kayoko Muraoka & Hiroyuki Watanabe & Akiko Kanaya & Nobuaki Egashira & Ichiro Ieiri, 2021. "Detection of overdose and underdose prescriptions—An unsupervised machine learning approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijoais:v:46:y:2022:i:c:s1467089522000227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-accounting-information-systems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.