IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v161y2024ics1389934124000145.html
   My bibliography  Save this article

Declining discount rate, rising non-timber benefits and the optimal sequence of rotations

Author

Listed:
  • Price, Colin
  • Willis, Rob

Abstract

Discount rates that decline through time prevent derivation of optimal rotations using the standard Faustmann formula. A backwards-recursive simulation has made it possible to derive an optimal sequence of rotations, including with an amenity value that rises both through crop age and through chronological time. Carbon fluxes are complex and difficult to incorporate in this backwards-recursive protocol, especially when carbon prices are predicted to change through time. An alternative forwards-recursive protocol using intelligent trial-and-error has proved capable of solving the optimal sequence of rotations for any combination of declining discount rate and rising amenity and carbon values. The optimal sequence contains rotations that generally – but not invariably – are longer by only a few years than those resulting from imposition of a uniform rotation across all crops. Their net present value is also only a little greater.

Suggested Citation

  • Price, Colin & Willis, Rob, 2024. "Declining discount rate, rising non-timber benefits and the optimal sequence of rotations," Forest Policy and Economics, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:forpol:v:161:y:2024:i:c:s1389934124000145
    DOI: 10.1016/j.forpol.2024.103161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934124000145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2024.103161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory S. Amacher & Markku Ollikainen & Erkki A. Koskela, 2009. "Economics of Forest Resources," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012480, December.
    2. Gollier, Christian, 2002. "Discounting an uncertain future," Journal of Public Economics, Elsevier, vol. 85(2), pages 149-166, August.
    3. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    4. Weitzman, Martin L., 1998. "Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 201-208, November.
    5. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    6. Price, Colin & Willis, Rob, 2011. "The multiple effects of carbon values on optimal rotation," Journal of Forest Economics, Elsevier, vol. 17(3), pages 298-306, August.
    7. Newell, Richard G. & Pizer, William A., 2004. "Uncertain discount rates in climate policy analysis," Energy Policy, Elsevier, vol. 32(4), pages 519-529, March.
    8. Knoke, Thomas & Paul, Carola & Härtl, Fabian, 2017. "A critical view on benefit-cost analyses of silvicultural management options with declining discount rates," Forest Policy and Economics, Elsevier, vol. 83(C), pages 58-69.
    9. Hepburn, Cameron J. & Koundouri, Phoebe, 2007. "Recent advances in discounting: Implications for forest economics," Journal of Forest Economics, Elsevier, vol. 13(2-3), pages 169-189, August.
    10. Brazee, Richard J., 2018. "Impacts of declining discount rates on optimal harvest age and land expectation values," Journal of Forest Economics, Elsevier, vol. 31(C), pages 27-38.
    11. Anthony C. Fisher & John V. Krutilla, 1975. "Resource Conservation, Environmental Preservation, and the Rate of Discount," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 89(3), pages 358-370.
    12. Price, Colin & Sjølie, Hanne Kathrine & Caurla, Sylvain & Yousefpour, Rasoul & Meilby, Henrik, 2020. "Optimal rotations with declining discount rate: incorporating thinning revenues and crop formation costs in a cross-European comparison," Forest Policy and Economics, Elsevier, vol. 118(C).
    13. Price, Colin, 2017. "Optimal rotation with differently-discounted benefit streams," Journal of Forest Economics, Elsevier, vol. 26(C), pages 1-8.
    14. Colin Price & Rob Willis, 2022. "Rising Carbon Price and the Paradoxes of Forest-based Sequestration," Journal of Forest Economics, now publishers, vol. 37(4), pages 403-436, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Price, Colin & Sjølie, Hanne Kathrine & Caurla, Sylvain & Yousefpour, Rasoul & Meilby, Henrik, 2020. "Optimal rotations with declining discount rate: incorporating thinning revenues and crop formation costs in a cross-European comparison," Forest Policy and Economics, Elsevier, vol. 118(C).
    2. Price, Colin, 2017. "Optimal rotation with differently-discounted benefit streams," Journal of Forest Economics, Elsevier, vol. 26(C), pages 1-8.
    3. Colin, Price, 2011. "Optimal rotation with declining discount rate," Journal of Forest Economics, Elsevier, vol. 17(3), pages 307-318, August.
    4. Price, Colin, 2018. "Declining discount rate and the social cost of carbon: Forestry consequences," Journal of Forest Economics, Elsevier, vol. 31(C), pages 39-45.
    5. Brazee, Richard J., 2018. "Impacts of declining discount rates on optimal harvest age and land expectation values," Journal of Forest Economics, Elsevier, vol. 31(C), pages 27-38.
    6. Defrancesco, Edi & Gatto, Paola & Rosato, Paolo, 2014. "A ‘component-based’ approach to discounting for natural resource damage assessment," Ecological Economics, Elsevier, vol. 99(C), pages 1-9.
    7. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    8. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    9. Knoke, Thomas & Paul, Carola & Härtl, Fabian, 2017. "A critical view on benefit-cost analyses of silvicultural management options with declining discount rates," Forest Policy and Economics, Elsevier, vol. 83(C), pages 58-69.
    10. Jussi Lintunen & Aapo Rautiainen & Jussi Uusivuori, 2022. "Which Is more Important, Carbon or Albedo? Optimizing Harvest Rotations for Timber and Climate Benefits in a Changing Climate," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 134-160, January.
    11. Dumenu, William Kwadwo, 2013. "What are we missing? Economic value of an urban forest in Ghana," Ecosystem Services, Elsevier, vol. 5(C), pages 137-142.
    12. Moeller, Jonas C. & Susaeta, Andres & Deegen, Peter & Sharma, Ajay, 2024. "Profitability analysis of southern plantations through timber alone or timber and carbon integration in pine-sweetgum mixes," Forest Policy and Economics, Elsevier, vol. 161(C).
    13. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    14. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    15. Price, Colin, 6. "Optimal Rotation under Continually – or Continuously – Declining Discount Rate," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 42, April.
    16. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    17. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    18. Ben Groom & Cameron Hepburn & Phoebe Koundouri & David Pearce, 2007. "Implications of declining discount rates: Climate Change Policy in the UK," DEOS Working Papers 0702, Athens University of Economics and Business.
    19. Freeman, Mark C., 2009. "Yes, we should discount the far-distant future at its lowest possible rate: a resolution of the Weitzman-Gollier puzzle," Economics Discussion Papers 2009-42, Kiel Institute for the World Economy (IfW Kiel).
    20. Saraev, Vadim & Valatin, Gregory & Peace, Andrew & Quine, Christopher, 2019. "How does a biodiversity value impact upon optimal rotation length? An investigation using species richness and forest stand age," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:161:y:2024:i:c:s1389934124000145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.