IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v117y2020ics1389934119305404.html
   My bibliography  Save this article

Drought risk to timber production – A risk versus return comparison of commercial conifer species in Scotland

Author

Listed:
  • Davies, Susan
  • Bathgate, Stephen
  • Petr, Michal
  • Gale, Alan
  • Patenaude, Genevieve
  • Perks, Mike

Abstract

Climate change will alter precipitation patterns across the world increasing drought risk to forests in some areas, especially where summer precipitation is reduced. Effective management of this risk requires quantified information on the probabilities and consequences of drought to support policy and strategic decisions on the choice of tree species that will provide drought resilience and ensure continued timber supply. Here we define a new approach to delivering this information to underpin management decisions on species choice for restocking. We derive location-specific risk versus return analyses, for twenty commercial timber species in Scotland, by quantifying the impact of drought risk under a high emission scenario on potential return, modelled as change in baseline volume of timber production (yield in m3 ha−1). We find that the current potential yield of Sitka spruce is likely to be sufficiently high to compensate for its relatively high drought susceptibility compared to alternative species, modelled over a new 50-year rotation. In regions projected to experience increased drought risk - particularly central and eastern areas of Scotland - the higher drought tolerance of some species means that they are likely to be viable alternatives to Sitka spruce, based on a threshold productivity which we set for the purposes of this analysis as ≥90% of predicted Sitka spruce yield. Since species diversification is a potential strategy to increase forest resilience against other risks, such as those from pest and diseases, our analysis provides a framework within which these regional decisions can be made. Risk management strategies should be introduced which include the risk from drought to commercial softwood plantations and thereby help protect timber volume production. The modelling approach outlined could be adapted to compare timber species in other regions where comparable data are available.

Suggested Citation

  • Davies, Susan & Bathgate, Stephen & Petr, Michal & Gale, Alan & Patenaude, Genevieve & Perks, Mike, 2020. "Drought risk to timber production – A risk versus return comparison of commercial conifer species in Scotland," Forest Policy and Economics, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:forpol:v:117:y:2020:i:c:s1389934119305404
    DOI: 10.1016/j.forpol.2020.102189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934119305404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2020.102189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michal Petr & Luc Boerboom & Anne Veen & Duncan Ray, 2014. "A spatial and temporal drought risk assessment of three major tree species in Britain using probabilistic climate change projections," Climatic Change, Springer, vol. 124(4), pages 791-803, June.
    2. Knoke, Thomas, 2008. "Mixed forests and finance -- Methodological approaches," Ecological Economics, Elsevier, vol. 65(3), pages 590-601, April.
    3. Anna Jönsson & Fredrik Lagergren & Benjamin Smith, 2015. "Forest management facing climate change - an ecosystem model analysis of adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 201-220, February.
    4. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    5. Petr, Michal & Boerboom, Luc & Ray, Duncan & van der Veen, Anne, 2014. "An uncertainty assessment framework for forest planning adaptation to climate change," Forest Policy and Economics, Elsevier, vol. 41(C), pages 1-11.
    6. William R. L. Anderegg & Alexandra G. Konings & Anna T. Trugman & Kailiang Yu & David R. Bowling & Robert Gabbitas & Daniel S. Karp & Stephen Pacala & John S. Sperry & Benjamin N. Sulman & Nicole Zene, 2018. "Hydraulic diversity of forests regulates ecosystem resilience during drought," Nature, Nature, vol. 561(7724), pages 538-541, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    2. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    3. Félix Bastit & Marielle Brunette & Claire Montagne-Huck, 2021. "Earth, wind and fire: A multi-hazard risk review for natural disturbances in forests," Working Papers of BETA 2021-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    4. Wildberg, Johannes & Möhring, Bernhard, 2019. "Empirical analysis of the economic effect of tree species diversity based on the results of a forest accountancy data network," Forest Policy and Economics, Elsevier, vol. 109(C).
    5. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    6. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    7. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    8. Ben-Haim, Yakov, 2021. "Feedback for energy conservation: An info-gap approach," Energy, Elsevier, vol. 223(C).
    9. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Dragicevic, Arnaud & Lobianco, Antonello & Leblois, Antoine, 2016. "Forest planning and productivity-risk trade-off through the Markowitz mean-variance model," Forest Policy and Economics, Elsevier, vol. 64(C), pages 25-34.
    11. Aline Fugeray-Scarbel & Xavier Irz & Stéphane Lemarié, 2023. "Innovation in forest tree genetics: A comparative economic analysis in the European context," Post-Print hal-04189304, HAL.
    12. Staffieri, Irene & Sitko, Nicholas J. & Maluccio, John A., 2023. "Sustaining enrolment when rains fail: School feeding, rainfall shocks and schooling in Malawi," Food Policy, Elsevier, vol. 121(C).
    13. Asada, Raphael & Hurmekoski, Elias & Hoeben, Annechien Dirkje & Patacca, Marco & Stern, Tobias & Toppinen, Anne, 2023. "Resilient forest-based value chains? Econometric analysis of roundwood prices in five European countries in the era of natural disturbances," Forest Policy and Economics, Elsevier, vol. 153(C).
    14. Khuc, Quy Van & Ho, Tung Manh & Nguyen, Hong-Kong T. & Nguyen, Minh-Hoang & Ho, Manh-Toan & Vuong, Thu-Trang & La, Viet-Phuong & Vuong, Quan-Hoang, 2020. "Toward a new paradigm of environmentally friendly cultural values," OSF Preprints 3g26q, Center for Open Science.
    15. M. Brunette & M. Hanewinkel & R. Yousefpour, 2020. "Risk aversion hinders forestry professionals to adapt to climate change," Climatic Change, Springer, vol. 162(4), pages 2157-2180, October.
    16. Qi Cai & Yushi Cai & Yali Wen, 2018. "Spatially Differentiated Trends between Forest Pest-Induced Losses and Measures for Their Control in China," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    17. Hildebrandt, Patrick & Knoke, Thomas, 2009. "Optimizing the shares of native tree species in forest plantations with biased financial parameters," Ecological Economics, Elsevier, vol. 68(11), pages 2825-2833, September.
    18. Brèteau-Amores, Sandrine & Brunette, Marielle & Davi, Hendrik, 2019. "An Economic Comparison of Adaptation Strategies Towards a Drought-induced Risk of Forest Decline," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    19. Nikinmaa, Laura & de Koning, Johannes H.C. & Derks, Jakob & Grabska-Szwagrzyk, Ewa & Konczal, Agata A. & Lindner, Marcus & Socha, Jarosław & Muys, Bart, 2024. "The priorities in managing forest disturbances to enhance forest resilience: A comparison of a literature analysis and perceptions of forest professionals," Forest Policy and Economics, Elsevier, vol. 158(C).
    20. Dongfan Xu & Jialong Zhang & Rui Bao & Yi Liao & Dongyang Han & Qianwei Liu & Tao Cheng, 2021. "Temporal and Spatial Variation of Aboveground Biomass of Pinus densata and Its Drivers in Shangri-La, CHINA," IJERPH, MDPI, vol. 19(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:117:y:2020:i:c:s1389934119305404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.