IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v71y2025ics1544612324015162.html
   My bibliography  Save this article

Intelligent forecasting in bitcoin markets

Author

Listed:
  • Cohen, Gil
  • Aiche, Avishay

Abstract

This paper examines the effectiveness of Artificial Intelligence (AI) in predicting Bitcoin's price movements. To achieve this, we developed two distinct trading strategies and compared their performance against each other and the traditional Buy and Hold (B&H) strategy. Over the period from January 2018 to September 2023, we found that the strategy optimized by ChatGPT 01-Preview, which integrates multiple technical indicators and sentiment analysis into a weighted composite index, delivered an exceptional total return of 944.85 %. The second strategy, that is using Extreme Gradient Boosting (XGBoost) technique achieved a total return of 189.05 %. The AI strategy's excess return of 755.8 % over the XGBoost strategy highlights the significant advantage of AI particularly in utilizing diverse data sources, such as social media, to predict Bitcoin's price trends more effectively than relying solely on economic data. Both trading strategies significantly outperformed the traditional B&H strategy, which returned 73.08 % over the same period. Furthermore, we found that AI has an advantage during periods of high Bitcoin price volatility.

Suggested Citation

  • Cohen, Gil & Aiche, Avishay, 2025. "Intelligent forecasting in bitcoin markets," Finance Research Letters, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:finlet:v:71:y:2025:i:c:s1544612324015162
    DOI: 10.1016/j.frl.2024.106487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324015162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:71:y:2025:i:c:s1544612324015162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.