IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v50y2022ics1544612322004767.html
   My bibliography  Save this article

What can we learn from financial stress indicator?

Author

Listed:
  • Zhang, Dan
  • Li, Biangxiang

Abstract

This paper investigates whether the information of the financial stress index has predictive power for stock returns. The empirical results show that the financial stress index is efficient in predicting stock returns. In addition, the financial stress index can provide incremental information based on 14 traditional macroeconomic variables. Considering different investor risk aversion coefficients, the financial stress index has the highest CER and SR gains among the predictors. Our paper tries to provide new evidence for stock return predictability from the perspective of financial stress.

Suggested Citation

  • Zhang, Dan & Li, Biangxiang, 2022. "What can we learn from financial stress indicator?," Finance Research Letters, Elsevier, vol. 50(C).
  • Handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004767
    DOI: 10.1016/j.frl.2022.103293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322004767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Wen, Fenghua & Zhang, Keli & Gong, Xu, 2021. "The effects of oil price shocks on inflation in the G7 countries," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    4. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
    5. Liang, Chao & Xu, Yongan & Wang, Jianqiong & Yang, Mo, 2022. "Whether dimensionality reduction techniques can improve the ability of sentiment proxies to predict stock market returns," International Review of Financial Analysis, Elsevier, vol. 82(C).
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    8. Wen, Fenghua & Shui, Aojie & Cheng, Yuxiang & Gong, Xu, 2022. "Monetary policy uncertainty and stock returns in G7 and BRICS countries: A quantile-on-quantile approach," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 457-482.
    9. John B. Taylor, 2014. "The Role of Policy in the Great Recession and the Weak Recovery," American Economic Review, American Economic Association, vol. 104(5), pages 61-66, May.
    10. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    11. Ghulam Abbas & Shouyang Wang, 2020. "Does macroeconomic uncertainty really matter in predicting stock market behavior? A comparative study on China and USA," China Finance Review International, Emerald Group Publishing Limited, vol. 10(4), pages 393-427, May.
    12. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    13. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    14. Ma, Feng & Lu, Xinjie & Liu, Jia & Huang, Dengshi, 2022. "Macroeconomic attention and stock market return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    15. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Yu. Malkina & Rodion V. Balakin, 2023. "The Relation of Financial and Industrial Stresses to Monetary Policy Parameters in the Russian Economy," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 104-121, June.
    2. Martínez-Ruiz, Yessenia & Manotas-Duque, Diego Fernando & Ramírez-Malule, Howard, 2023. "Financial risk assessment of a district cooling system," Energy, Elsevier, vol. 278(PA).
    3. M. Yu. Malkina, 2024. "Real Income Stress in Russian Regions Amid the Pandemic and Sanctions," Regional Research of Russia, Springer, vol. 14(2), pages 109-125, June.
    4. Naomi Pode-Shakked & Megan Slack & Nambirajan Sundaram & Ruth Schreiber & Kyle W. McCracken & Benjamin Dekel & Michael Helmrath & Raphael Kopan, 2023. "RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Qing & Lu, Xinjie & Dong, Dayong & Li, Pan, 2022. "Category-specific EPU indices, macroeconomic variables and stock market return predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. Lv, Wendai & Qi, Jipeng, 2022. "Stock market return predictability: A combination forecast perspective," International Review of Financial Analysis, Elsevier, vol. 84(C).
    3. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    4. Qiu, Rui & Liu, Jing & Li, Yan, 2023. "Long-term adjusted volatility: Powerful capability in forecasting stock market returns," International Review of Financial Analysis, Elsevier, vol. 86(C).
    5. Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Xu, Yongan & Liang, Chao & Li, Yan & Huynh, Toan L.D., 2022. "News sentiment and stock return: Evidence from managers’ news coverages," Finance Research Letters, Elsevier, vol. 48(C).
    7. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    8. Xu, Yongan & Liang, Chao & Wang, Jianqiong, 2023. "Financial stress and returns predictability: Fresh evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    9. Ma, Feng & Lu, Xinjie & Liu, Jia & Huang, Dengshi, 2022. "Macroeconomic attention and stock market return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    10. Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
    11. Liang, Chao & Xu, Yongan & Wang, Jianqiong & Yang, Mo, 2022. "Whether dimensionality reduction techniques can improve the ability of sentiment proxies to predict stock market returns," International Review of Financial Analysis, Elsevier, vol. 82(C).
    12. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    13. Yongan Xu & Jianqiong Wang & Zhonglu Chen & Chao Liang, 2023. "Sentiment indices and stock returns: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1063-1080, January.
    14. Huang, Yisu & Ma, Feng & Bouri, Elie & Huang, Dengshi, 2023. "A comprehensive investigation on the predictive power of economic policy uncertainty from non-U.S. countries for U.S. stock market returns," International Review of Financial Analysis, Elsevier, vol. 87(C).
    15. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    16. Ma, Feng & Lu, Fei & Tao, Ying, 2022. "Geopolitical risk and excess stock returns predictability: New evidence from a century of data," Finance Research Letters, Elsevier, vol. 50(C).
    17. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Li, Dakai, 2024. "Forecasting stock market realized volatility: The role of investor attention to the price of petroleum products," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 115-122.
    19. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    20. Xu, Yongan & Duong, Duy & Xu, Hualong, 2023. "Attention! Predicting crude oil prices from the perspective of extreme weather," Finance Research Letters, Elsevier, vol. 57(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.