IDEAS home Printed from https://ideas.repec.org/a/eee/eproec/v4y1979i4p435-454.html
   My bibliography  Save this article

Measurement of technology progress and capital cost for nuclear, coal-fired, and gas-fired power plants using the learning curve

Author

Listed:
  • Ostwald, Phillip F.
  • Reisdorf, John B.

Abstract

No abstract is available for this item.

Suggested Citation

  • Ostwald, Phillip F. & Reisdorf, John B., 1979. "Measurement of technology progress and capital cost for nuclear, coal-fired, and gas-fired power plants using the learning curve," Engineering and Process Economics, Elsevier, vol. 4(4), pages 435-454, December.
  • Handle: RePEc:eee:eproec:v:4:y:1979:i:4:p:435-454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-841X(79)90002-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    2. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
    3. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    4. Verbruggen, Aviel & Laes, Erik & Lemmens, Sanne, 2014. "Assessment of the actual sustainability of nuclear fission power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 16-28.
    5. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    6. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eproec:v:4:y:1979:i:4:p:435-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505647 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.