IDEAS home Printed from https://ideas.repec.org/a/eee/enscpo/v59y2016icp1-9.html
   My bibliography  Save this article

Flood inundation uncertainty: The case of a 0.5% annual probability flood event

Author

Listed:
  • Prime, Thomas
  • Brown, Jennifer M.
  • Plater, Andrew J.

Abstract

Aging coastal defences around the UK are challenging managers to redesign schemes to be resilient to extreme events and climate change, be cost-effective, and have minimal or beneficial environmental impact. To enable effective design, reduced uncertainty in the assessment of flood risk due to natural variability within the coastal forcing is required to focus on conditions that pose highest threat. The typical UK standard of protection for coastal defences is to withstand a 0.5% annual probability event, historically also known as a 1 in 200 year return period event. However, joint wave-water level probability curves provide a range of conditions that meet this criterion. We examine the Dungeness and Romney Marsh coastal zone, a region of high value in terms of habitat and energy assets, to quantify the uncertainty in flood depth and extent generated by a 0.5% probability event, and to explore which combinations of wave and water levels generate the greatest threat.

Suggested Citation

  • Prime, Thomas & Brown, Jennifer M. & Plater, Andrew J., 2016. "Flood inundation uncertainty: The case of a 0.5% annual probability flood event," Environmental Science & Policy, Elsevier, vol. 59(C), pages 1-9.
  • Handle: RePEc:eee:enscpo:v:59:y:2016:i:c:p:1-9
    DOI: 10.1016/j.envsci.2016.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1462901116300181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.envsci.2016.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jidong Wu & Mengqi Ye & Xu Wang & Elco Koks, 2019. "Building Asset Value Mapping in Support of Flood Risk Assessments: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    2. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    3. Charlotte Lyddon & Jenny M Brown & Nicoletta Leonardi & Andrew J Plater, 2018. "Uncertainty in estuarine extreme water level predictions due to surge-tide interaction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    4. Bouchra Zellou & Hassane Rahali, 2017. "Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 1-29, March.
    5. Pratyay Manna & Mohammed Zafar Anis & Prasun Das & Soumya Banerjee, 2019. "Probabilistic Modeling of Flood Hazard and its Risk Assessment for Eastern Region of India," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1615-1633, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enscpo:v:59:y:2016:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/environmental-science-and-policy/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.