IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v8y1983i12p927-946.html
   My bibliography  Save this article

The exergy of the ocean thermal resource and analysis of second-law efficiencies of idealized ocean thermal energy conversion power cycles

Author

Listed:
  • Johnson, D.H.

Abstract

We develop a fomula here to compute the maximum amount of work which can be extracted from a given combined mass of warm and cold ocean water (a quantity called the exergy of the ocean thermal resource). We then compare the second-law efficiencies of various proposed ocean thermal energy conversion power cycles to determine which best utilizes the exergy of the ocean thermal resource. The second-law efficiencies of the multicomponent working fluid cycle, the Beck cycle, and the open and closed single- and multiple-stage Rankine cycles are compared. These types of OTEC power plants are analyzed in a consistent manner, which assumes that all deviations from a plant making use of all the exergy (one with a second-law efficiency of 100%) occur because of irreversible transfer of heat across a finite temperature difference. Conversion of thermal energy to other forms is assumed to occur reversibly. The comparison of second-law efficiencies of various OTEC power cycles shows that the multistage Rankine open cycle with just three stages has the potential of best using the exergy of the ocean thermal resource.

Suggested Citation

  • Johnson, D.H., 1983. "The exergy of the ocean thermal resource and analysis of second-law efficiencies of idealized ocean thermal energy conversion power cycles," Energy, Elsevier, vol. 8(12), pages 927-946.
  • Handle: RePEc:eee:energy:v:8:y:1983:i:12:p:927-946
    DOI: 10.1016/0360-5442(83)90092-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544283900920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(83)90092-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeshi Yasunaga & Kevin Fontaine & Yasuyuki Ikegami, 2021. "Performance Evaluation Concept for Ocean Thermal Energy Conversion toward Standardization and Intelligent Design," Energies, MDPI, vol. 14(8), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:8:y:1983:i:12:p:927-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.