IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp576-592.html
   My bibliography  Save this article

Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality

Author

Listed:
  • Qader, M.R.

Abstract

The UPFC (unified power flow controller) is one of the modern power electronics devices that can be used for the control of real and reactive power in a transmission line. The UPFC uses VSC (voltage sourced converter) technology to inject a series voltage with the sending end ac source to achieve its control objective with high speed, making it suitable for maintaining the voltage and mechanical stability of a network. There are frequent disturbances in a power system due to its dynamic nature. These disturbances must be controlled so that they cannot lead the system to an unsteady condition. Recently developed FACTS (flexible alternating current transmission system) provide steadfast solutions to avert these issues in power quality. Due to the improvements in these solutions, some critical issues have been come to sight pertaining to power quality, dependability and permanence. The most effective and potential technologies among recently developed FACTS devices are STATCOM (static synchronous compensator) and UPFC (unified power flow controller) that can significantly enhance the operations of power systems and associated power quality problems. In order to control entire flow of load and voltage sags/flickers; while eliminating harmonics simultaneously, this paper presents an inventive systematic approach on the basis of optimal control and tracking with a PI (proportional integral) controller, the desired steady state behavior, and a linear quadratic tracker. Moreover, a MATLAB/Simulink model is also established in the paper for the UPFC in the environment of Simulink, once its principles are analyzed. After monitoring the simulation results, it was concluded that UPFC based controller systems can efficiently manage the load flow and voltage sags/flickers. Test results using different power system models are presented throughout the thesis to illustrate the effectiveness of Unified Power Flow Controller.

Suggested Citation

  • Qader, M.R., 2015. "Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality," Energy, Elsevier, vol. 89(C), pages 576-592.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:576-592
    DOI: 10.1016/j.energy.2015.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhui Li & Tianyang Zhang & Lei Qi & Gangui Yan, 2017. "A Method for the Realization of an Interruption Generator Based on Voltage Source Converters," Energies, MDPI, vol. 10(10), pages 1-19, October.
    2. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.

    More about this item

    Keywords

    FACTS; STATCOM; UPFC; Voltage sags;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:576-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.