IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp361-368.html
   My bibliography  Save this article

Dynamic thermal dimensioning of underground spaces

Author

Listed:
  • Kajtar, Laszlo
  • Nyers, Jozsef
  • Szabo, Janos

Abstract

The accurate dynamic determination of the average energy demand of an underground space is difficult because the soil surrounding the rooms is a semi-infinite space and its temperature varies in annual cycles. In this paper a method is presented for dimensioning underground spaces in terms of heat transfer characteristics and thermal comfort. The dynamic physical and mathematical model with initial and boundary conditions have been developed. Within the procedure of mathematical modelling the heat transfer properties, the heat comfort model and the simulation algorithm of underground spaces have been created. The obtained simulation results are presented in diagrams in favour of the quick sizing of the required heating and cooling performance of underground spaces. The presented diagrams can be used in an effective manner also for the calculation of thermal comfort in underground spaces. These are new in our paper.

Suggested Citation

  • Kajtar, Laszlo & Nyers, Jozsef & Szabo, Janos, 2015. "Dynamic thermal dimensioning of underground spaces," Energy, Elsevier, vol. 87(C), pages 361-368.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:361-368
    DOI: 10.1016/j.energy.2015.04.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyers, Jozsef & Garbai, Laszlo & Nyers, Arpad, 2015. "A modified mathematical model of heat pump's condenser for analytical optimization," Energy, Elsevier, vol. 80(C), pages 706-714.
    2. Ip, Kenneth & Miller, Andrew, 2009. "Thermal behaviour of an earth-sheltered autonomous building – The Brighton Earthship," Renewable Energy, Elsevier, vol. 34(9), pages 2037-2043.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szabó, J. & Kajtár, L. & Nyers, J. & Bokor, B., 2016. "A new approach and results of wall and air temperature dynamic analysis in underground spaces," Energy, Elsevier, vol. 106(C), pages 520-527.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szabó, J. & Kajtár, L. & Nyers, J. & Bokor, B., 2016. "A new approach and results of wall and air temperature dynamic analysis in underground spaces," Energy, Elsevier, vol. 106(C), pages 520-527.
    2. Sánta, Róbert & Garbai, László & Fürstner, Igor, 2015. "Optimization of heat pump system," Energy, Elsevier, vol. 89(C), pages 45-54.
    3. Serrano, Susana & de Gracia, Alvaro & Cabeza, Luisa F., 2016. "Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions," Applied Energy, Elsevier, vol. 175(C), pages 180-188.
    4. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    5. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    6. Menoufi, Karim & Castell, Albert & Navarro, Lídia & Pérez, Gabriel & Boer, Dieter & Cabeza, Luisa F., 2012. "Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase," Applied Energy, Elsevier, vol. 92(C), pages 534-544.
    7. Navarro, Lidia & de Gracia, Alvaro & Niall, Dervilla & Castell, Albert & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system," Renewable Energy, Elsevier, vol. 85(C), pages 1334-1356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:361-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.