IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp310-316.html
   My bibliography  Save this article

Wood energy in India: Status and prospects

Author

Listed:
  • Bhattacharya, S.C.

Abstract

Wood plays a key role in meeting energy demand in India, particularly in rural areas; its share in total energy consumption of the country is estimated to be about 18%. Traditionally wood is mostly used as fuel in household cooking; small quantities are also used in other applications such as restaurants, brick and tile manufacturing and agro-processing. The energy crisis of 1973 triggered interest in use of wood in modern applications, initially in gasifiers for pumping water and small-scale electricity generation in rural areas and later in power generation using steam turbines. Although installed capacity of biopower generation has been growing at an annual average rate of about 16% since December 2005, the sector appears to be facing uncertain future because of rising cost and lack of reliable supplies of wood. This paper presents a review of different aspects of wood energy in India and an assessment of wood energy potential in 2050 based on availability and productivity of different types of land for wood production; the potential of biopower capacity based on surplus wood after meeting demands for timber and fuelwood is estimated to be 180–260 GW.

Suggested Citation

  • Bhattacharya, S.C., 2015. "Wood energy in India: Status and prospects," Energy, Elsevier, vol. 85(C), pages 310-316.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:310-316
    DOI: 10.1016/j.energy.2015.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gevorg Sargsyan & Mikul Bhatia & Sudeshna Ghosh Banerjee & Krishnan Raghunathan & Ruchi Soni, 2011. "Unleashing the Potential of Renewable Energy in India," World Bank Publications - Books, The World Bank Group, number 2318.
    2. Ravindranath, N. H. & Hall, D. O., 1995. "Biomass, Energy, and Environment: A Developing Country Perspective from India," OUP Catalogue, Oxford University Press, number 9780198564362, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Jiang & Xue Yang & Shuyu Li, 2018. "Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model, MGM-ARIMA Model, and BP Neural Network Model," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    2. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
    3. Hunt, Julian David & Guillot, Vincent & Freitas, Marcos Aurélio Vasconcelos de & Solari, Renzo S.E., 2016. "Energy crop storage: An alternative to resolve the problem of unpredictable hydropower generation in Brazil," Energy, Elsevier, vol. 101(C), pages 91-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    2. Rahul Hiremath & Bimlesh Kumar & P. Balachandra & N. Ravindranath, 2010. "Sustainable bioenergy production strategies for rural India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 571-590, August.
    3. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    4. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    5. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    6. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H. & Ashok, Veilumuthu, 2013. "A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur distric," Energy, Elsevier, vol. 52(C), pages 77-88.
    7. Debyani Ghosh, 2008. "Renewable Energy Strategies for Indian Power Sector," Working Papers id:1715, eSocialSciences.
    8. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    9. Purohit, Pallav, 2007. "Financial evaluation of renewable energy technologies for irrigation water pumping in India," Energy Policy, Elsevier, vol. 35(6), pages 3134-3144, June.
    10. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    11. Bai, Attila & Durkó, Emília & Tar, Károly & Tóth, József Barnabás & Lázár, István & Kapocska, László & Kircsi, Andrea & Bartók, Blanka & Vass, Róbert & Pénzes, János & Tóth, Tamás, 2016. "Social and economic possibilities for the energy utilization of fitomass in the valley of the river Hernád," Renewable Energy, Elsevier, vol. 85(C), pages 777-789.
    12. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    13. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    14. Wang, Qiang, 2009. "Prevention of Tibetan eco-environmental degradation caused by traditional use of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2562-2570, December.
    15. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
    16. Jayant Sathaye & N. Ravindranath, 1997. "Policies, measures and the monitoring needs of forest sector carbon mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(2), pages 101-115, June.
    17. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    18. Deep Narayan Pandey, 2002. "Carbon sequestration in agroforestry systems," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 367-377, December.
    19. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
    20. Hadi Shenabi & Rashed Sahraeian, 2024. "Decision-Making Approach to Design a Sustainable Photovoltaic Closed-Loop Supply Chain Considering Market Share for Electric Vehicle Energy," Sustainability, MDPI, vol. 16(13), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:310-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.