IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp691-695.html
   My bibliography  Save this article

Microbial Fe (III) reduction and hydrogen production by a transposon-mutagenized strain of Pantoea agglomerans BH18

Author

Listed:
  • Liu, Hongyan
  • Wang, Guangce

Abstract

Based on the transposon-mutagenized library of Pantoea agglomerans BH18, mutant screens were conducted to obtain the strain with the highest Fe (III) reduction and hydrogen production. Of these transposon-mutagenized mutants, the mutant strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. The PCR amplification and kanamycin resistance selection results indicated that the transposon insertion of the mutant strain TB230 was stable. Hydrogen production of the mutant strain TB230 was (2.21 ± 0.34) mol H2/mol glucose, which increased hydrogen production by over 40% compared with that of the wild type strain. The accumulation concentration of Fe (II) in the medium of the mutant strain TB230 with Fe (OH)3 as the sole electron acceptor was (7.39 ± 0.49) mmol/l, which was approximately 3-fold greater than that of the wild type strain. The mutant strain TB230 showed high Fe (III)-reducing activity and hydrogen production by adopting glucose and pyruvate as the carbon source. In addition, the mutant strain TB230 was capable of Fe (III) reduction and hydrogen production under fresh or marine conditions. This result indicates that the mutant strain with high microbial Fe (III) reduction and hydrogen production is beneficial for the improvement of anaerobic performance.

Suggested Citation

  • Liu, Hongyan & Wang, Guangce, 2015. "Microbial Fe (III) reduction and hydrogen production by a transposon-mutagenized strain of Pantoea agglomerans BH18," Energy, Elsevier, vol. 81(C), pages 691-695.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:691-695
    DOI: 10.1016/j.energy.2015.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Kadier, Abudukeremu & Abdeshahian, Peyman & Simayi, Yibadatihan & Ismail, Manal & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2015. "Grey relational analysis for comparative assessment of different cathode materials in microbial electrolysis cells," Energy, Elsevier, vol. 90(P2), pages 1556-1562.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:691-695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.