IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp447-459.html
   My bibliography  Save this article

New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles

Author

Listed:
  • Da Lio, Luca
  • Manente, Giovanni
  • Lazzaretto, Andrea

Abstract

Turbine efficiency plays a key role in the design optimization of ORCs (organic Rankine cycles) and should be properly evaluated for an accurate estimate of the real power production. Its value is in general assumed as given in the design optimization procedure, without a check that it can be really achieved in the resulting working conditions. The peculiar properties of high molecular weight fluids markedly influence turbine design and ask for turbine design criteria specifically tailored to ORCs. In this work a meanline design procedure for single stage axial flow turbines is developed to find optimum turbine geometry and efficiency in a wide range of operating conditions. Unlike previous literature, real fluid properties and very recent loss models are implemented. The variation of the predicted turbine efficiency with loading coefficient, flow coefficient, specific speed and specific diameter is shown through new general maps that explicitly take into account the strong influence of compressibility and turbine size through the volumetric expansion ratio and size parameter, respectively. All these maps can be included in a general design optimization procedure of the ORC system to help select the optimum design point, overcoming any arbitrary assumptions on turbine efficiency.

Suggested Citation

  • Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2014. "New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles," Energy, Elsevier, vol. 77(C), pages 447-459.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:447-459
    DOI: 10.1016/j.energy.2014.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D'Amico, F. & Pallis, P. & Leontaritis, A.D. & Karellas, S. & Kakalis, N.M. & Rech, S. & Lazzaretto, A., 2018. "Semi-empirical model of a multi-diaphragm pump in an Organic Rankine Cycle (ORC) experimental unit," Energy, Elsevier, vol. 143(C), pages 1056-1071.
    2. Manente, Giovanni & Lazzaretto, Andrea & Bonamico, Eleonora, 2017. "Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems," Energy, Elsevier, vol. 123(C), pages 413-431.
    3. Mounier, Violette & Olmedo, Luis Eric & Schiffmann, Jürg, 2018. "Small scale radial inflow turbine performance and pre-design maps for Organic Rankine Cycles," Energy, Elsevier, vol. 143(C), pages 1072-1084.
    4. Wang, Tianze & Xu, Jinliang & Wang, Zhaofu & Zheng, Haonan & Qi, Jianhui & Liu, Guanglin, 2023. "Irreversible losses, characteristic sizes and efficiencies of sCO2 axial turbines dependent on power capacities," Energy, Elsevier, vol. 275(C).
    5. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2017. "A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems," Applied Energy, Elsevier, vol. 205(C), pages 187-209.
    6. Al Jubori, Ayad M. & Al-Dadah, Raya K. & Mahmoud, Saad & Daabo, Ahmed, 2017. "Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications," Applied Energy, Elsevier, vol. 190(C), pages 981-996.
    7. Liu, Changxing & Zou, Zhengping & Xu, Pengcheng & Wang, Yifan, 2024. "Development of helium turbine loss model based on knowledge transfer with neural network and its application on aerodynamic design," Energy, Elsevier, vol. 297(C).
    8. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    9. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    10. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide, 2022. "Techno-economic performance of the 2-propanol/1-butanol zeotropic mixture and 2-propanol/water azeotropic mixture as a working fluid in Organic Rankine Cycles," Energy, Elsevier, vol. 246(C).
    11. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang, 2019. "Performance analysis of low speed axial impulse turbine using two type nozzles for small-scale organic Rankine cycle," Energy, Elsevier, vol. 169(C), pages 1139-1152.
    12. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    13. Yang, Yi & Huo, Yaowu & Xia, Wenkai & Wang, Xurong & Zhao, Pan & Dai, Yiping, 2017. "Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China," Energy, Elsevier, vol. 140(P1), pages 633-645.
    14. Ningjian Peng & Enhua Wang & Hongguang Zhang, 2021. "Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2016. "Predicting the optimum design of single stage axial expanders in ORC systems: Is there a single efficiency map for different working fluids?," Applied Energy, Elsevier, vol. 167(C), pages 44-58.
    16. Masi, Massimo & Da Lio, Luca & Lazzaretto, Andrea, 2020. "An insight into the similarity approach to predict the maximum efficiency of organic Rankine cycle turbines," Energy, Elsevier, vol. 198(C).
    17. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    18. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    19. Andrea Meroni & Angelo La Seta & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model," Energies, MDPI, vol. 9(5), pages 1-15, April.
    20. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:447-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.