IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp624-629.html
   My bibliography  Save this article

A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

Author

Listed:
  • Park, Sangwon
  • Jo, Hoyong
  • Kang, Dongwoo
  • Park, Jinwon

Abstract

CCS (carbon capture and storage) is the most popular technology used for the reduction of CO2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO2. Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH)2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO2 in the MEA solution). Consequently, most of the CO2 was converted to carbonate. The MEA converted CO2 to ionic CO2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO3 and Ca(OH)2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO2. Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO2, but it can also be employed to reuse construction wastes that include heavy metals.

Suggested Citation

  • Park, Sangwon & Jo, Hoyong & Kang, Dongwoo & Park, Jinwon, 2014. "A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry," Energy, Elsevier, vol. 75(C), pages 624-629.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:624-629
    DOI: 10.1016/j.energy.2014.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weifeng & Xu, Yuanlong & Deng, Zhaoxiong & Wang, Qiuhua, 2022. "Experiments on continuous chemical desorption of CO2-rich solutions," Energy, Elsevier, vol. 239(PD).
    2. Park, Sangwon, 2018. "CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism," Energy, Elsevier, vol. 153(C), pages 413-421.
    3. Sangwon Park & Yeon-Sik Bong & Chi Wan Jeon, 2020. "Characteristics of Carbonate Formation from Concentrated Seawater Using CO 2 Chemical Absorption Methodology," IJERPH, MDPI, vol. 18(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:624-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.