IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v6y1981i10p1041-1052.html
   My bibliography  Save this article

Energy development and urban employment creation: The case of the city of Los Angeles

Author

Listed:
  • Rose, Adam
  • Kolk, David
  • Brady, Michael
  • Kneisel, Robert

Abstract

Today government at all levels is being called upon to devise policies which minimize the negative impacts of the energy crisis, while continuing to meet broad social goals such as full employment. This paper analyzes four energy management tactics in terms of their economic viability and ability to generate employment at the local level. They include: 1.(1) solar water heating,2.(2) weatherization,3.(3) coal-fired electricity generation,4.(4) liquified natural gas distribution. In general it was found that new energy options offer a significant number of job openings, though they are by no means a major solution to urban unemployment as some have suggested. Also, the time-path and pattern of employment gains must be evaluated carefully by policy-makers if labor force dislocations are to be avoided.

Suggested Citation

  • Rose, Adam & Kolk, David & Brady, Michael & Kneisel, Robert, 1981. "Energy development and urban employment creation: The case of the city of Los Angeles," Energy, Elsevier, vol. 6(10), pages 1041-1052.
  • Handle: RePEc:eee:energy:v:6:y:1981:i:10:p:1041-1052
    DOI: 10.1016/0360-5442(81)90095-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544281900955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(81)90095-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth C. Hoffman & Dale W. Jorgenson, 1977. "Economic and Technological Models for Evaluation of Energy Policy," Bell Journal of Economics, The RAND Corporation, vol. 8(2), pages 444-466, Autumn.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Le Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Post-Print hal-03897206, HAL.
    2. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    3. Dhakouani, Asma & Znouda, Essia & Bouden, Chiheb, 2019. "Impacts of energy efficiency policies on the integration of renewable energy," Energy Policy, Elsevier, vol. 133(C).
    4. William W. Hogan, 2002. "Energy Modeling for Policy Studies," Operations Research, INFORMS, vol. 50(1), pages 89-95, February.
    5. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    6. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    7. Henrik Jacobsen, 2000. "Modelling a sector undergoing structural change: The case of Danish energy supply," Annals of Operations Research, Springer, vol. 97(1), pages 231-247, December.
    8. Walter Labys, 2005. "Commodity Price Fluctuations: A Century of Analysis," Working Papers Working Paper 2005-01, Regional Research Institute, West Virginia University.
    9. Maryse Labriet & Laurent Drouet & Marc Vielle & Richard Loulou & Amit Kanudia & Alain Haurie, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Working Papers 2015.23, Fondazione Eni Enrico Mattei.
    10. Sophie Maire & Philippe Thalmann & Frank Vöhringer, 2019. "Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    11. Natalia Gennadyevna Zakharchenko & Olga Valeryevna Dyomina, 2015. "Modelling Energy - Economy Interactions: The Far East Experience," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 1, pages 62-90.
    12. Clinch, J. Peter & Healy, John D., 2003. "Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model," Energy Economics, Elsevier, vol. 25(5), pages 565-583, September.
    13. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto & A. Wahid, Mazlan, 2016. "Multicriteria-based decision aiding technique for assessing energy policy elements-demonstration to a case in Bangladesh," Applied Energy, Elsevier, vol. 164(C), pages 237-244.
    14. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.
    15. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    16. Fattahi, Amirhossein & Reynès, Frédéric & van der Zwaan, Bob & Sijm, Jos & Faaij, André, 2023. "Soft-linking a national computable general equilibrium model (ThreeME) with a detailed energy system model (IESA-Opt)," Energy Economics, Elsevier, vol. 123(C).
    17. Dania Ortiz & Vítor Leal, 2020. "Energy Policy Concerns, Objectives and Indicators: A Review towards a Framework for Effectiveness Assessment," Energies, MDPI, vol. 13(24), pages 1-26, December.
    18. Mukherjee, Shishir K., 1981. "Energy policy and planning in India," Energy, Elsevier, vol. 6(8), pages 823-851.
    19. Huntington, Hillard G., 2021. "Model evaluation for policy insights: Reflections on the forum process," Energy Policy, Elsevier, vol. 156(C).
    20. Milad Maralani & Milad Maralani & Basil Sharp & Golbon Zakeri, 2016. "The Potential Impact of Industrial Energy Savings on The New Zealand Economy," EcoMod2016 9308, EcoMod.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:6:y:1981:i:10:p:1041-1052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.