IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v5y1980i7p587-596.html
   My bibliography  Save this article

Conservation of available work (exergy) by using promoters of swirl flow in forced convection heat transfer

Author

Listed:
  • Oullette, William R.
  • Bejan, Adrian

Abstract

We examine the potential of heat-transfer augmentation techniques to reduce irreversibility (entropy generation, destruction of available work) in equipment for heat exchange. A number of popular swirl flow-promoting techniques is investigated in detail. It is shown that the irreversibility reduction induced by each technique depends strongly on the operating parameters of the apparatus in which heat transfer is to be augmented. An important operating parameter is the ratio of fluid-friction irreversibility divided by heat-transfer irreversibility, φ0. It is shown that φ0 must lie below a critical value in order for a proposed augmentation technique to yield savings in available work. The paper illustrates the use of entropy generation in assessing the relative merit of competing heat-transfer augmentation techniques. The geometric features of a proposed augmentation technique can be optimally selected in order to yield the maximum reduction in heat exchanger duct irreversibility.

Suggested Citation

  • Oullette, William R. & Bejan, Adrian, 1980. "Conservation of available work (exergy) by using promoters of swirl flow in forced convection heat transfer," Energy, Elsevier, vol. 5(7), pages 587-596.
  • Handle: RePEc:eee:energy:v:5:y:1980:i:7:p:587-596
    DOI: 10.1016/0360-5442(80)90039-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544280900390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(80)90039-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    2. Satapathy, Ashok K., 2009. "Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition," Energy, Elsevier, vol. 34(9), pages 1122-1126.
    3. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:5:y:1980:i:7:p:587-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.