IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp632-640.html
   My bibliography  Save this article

Thermal pulse energy harvesting

Author

Listed:
  • McKay, Ian Salmon
  • Wang, Evelyn N.

Abstract

This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during each thermal pulse, rather than divided between the heat engine and a heat sink. This effect allows the energy harvester to work at maximum power and efficiency despite an otherwise unfavorable heat engine–heat sink thermal resistance ratio. In this paper, the analysis of a generalized energy harvester model and experiments with a mechanical thermal switch demonstrate how the pulse mode can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80%, although at reduced total power. At a 1:2 engine–sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy promises to enhance the efficiency and power density of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.

Suggested Citation

  • McKay, Ian Salmon & Wang, Evelyn N., 2013. "Thermal pulse energy harvesting," Energy, Elsevier, vol. 57(C), pages 632-640.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:632-640
    DOI: 10.1016/j.energy.2013.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Maoying & Al-Furjan, Mohannad Saleh Hammadi & Zou, Jun & Liu, Weiting, 2018. "A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3582-3609.
    2. Zeadally, Sherali & Shaikh, Faisal Karim & Talpur, Anum & Sheng, Quan Z., 2020. "Design architectures for energy harvesting in the Internet of Things," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Li, Saiwei & Sun, Zhiqiang, 2015. "Harvesting vortex energy in the cylinder wake with a pivoting vane," Energy, Elsevier, vol. 88(C), pages 783-792.
    4. Wang, Kai & Zhang, Li & Ji, Bingcheng & Yuan, Jinlei, 2013. "The thermal analysis on the stackable supercapacitor," Energy, Elsevier, vol. 59(C), pages 440-444.
    5. Lorenzo Castelli & Qing Zhu & Trevor J. Shimokusu & Geoff Wehmeyer, 2023. "A three-terminal magnetic thermal transistor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Jeong, Se Yeong & Hwang, Won Seop & Cho, Jae Yong & Jeong, Jae Chul & Ahn, Jung Hwan & Kim, Kyung Bum & Hong, Seong Do & Song, Gyeong Ju & Jeon, Deok Hwan & Sung, Tae Hyun, 2019. "Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes," Energy, Elsevier, vol. 177(C), pages 87-93.
    7. Yao, Wei & Lu, Xiaochen & Wang, Chao & Wu, Yao & Ma, Rong & Song, Jian, 2015. "Dynamic modelling and simulation of a heat engine aerobot for atmospheric energy utilization," Energy, Elsevier, vol. 79(C), pages 439-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:632-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.