IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v50y2013icp501-512.html
   My bibliography  Save this article

Heuristic indicators for the design of community off-grid electrification systems based on multiple renewable energies

Author

Listed:
  • Ranaboldo, Matteo
  • Ferrer-Martí, Laia
  • García-Villoria, Alberto
  • Pastor Moreno, Rafael

Abstract

Off-grid rural electrification project configurations which consider hybrid generation systems based on multiple renewable sources and the implementation of micro-grids are the most promising design solutions. The efficient design of those systems is a complex task that is facing several technical issues such as limited time and resources available for the purpose, especially in developing countries. This study proposes indicators for supporting and improving the design of community off-grid electrification projects considering hybrid generation and micro-grids. A (Grid Generation Score) GGS is defined in order to identify most promising locations for being the generation point of a micro-grid. The (No-Generation Score) NGS and the (Independent Generation Score) IGS evaluate respectively if a point should be reliably connected to a micro-grid or should better be an independent generation point. All indicators could be easily and quickly calculated at a very first stage of the plan of a community project requiring as input data only demand and resource distributions in the studied area. It is shown that the utilization of proposed indictors can enhance the design of stand-alone community electrification projects based on renewable energies.

Suggested Citation

  • Ranaboldo, Matteo & Ferrer-Martí, Laia & García-Villoria, Alberto & Pastor Moreno, Rafael, 2013. "Heuristic indicators for the design of community off-grid electrification systems based on multiple renewable energies," Energy, Elsevier, vol. 50(C), pages 501-512.
  • Handle: RePEc:eee:energy:v:50:y:2013:i:c:p:501-512
    DOI: 10.1016/j.energy.2012.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212008869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    2. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    3. Parshall, Lily & Pillai, Dana & Mohan, Shashank & Sanoh, Aly & Modi, Vijay, 2009. "National electricity planning in settings with low pre-existing grid coverage: Development of a spatial model and case study of Kenya," Energy Policy, Elsevier, vol. 37(6), pages 2395-2410, June.
    4. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    5. Fang, Yong & Li, Jing & Wang, Mingming, 2012. "Development policy for non-grid-connected wind power in China: An analysis based on institutional change," Energy Policy, Elsevier, vol. 45(C), pages 350-358.
    6. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2010. "Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh," Energy, Elsevier, vol. 35(7), pages 3040-3047.
    7. Sridharan, R., 1995. "The capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 87(2), pages 203-213, December.
    8. Laia Ferrer-Martí & Rafael Pastor & G. Capó & Enrique Velo, 2011. "Optimizing microwind rural electrification projects. A case study in Peru," Journal of Global Optimization, Springer, vol. 50(1), pages 127-143, May.
    9. Paleta, Rita & Pina, André & Silva, Carlos A., 2012. "Remote Autonomous Energy Systems Project: Towards sustainability in developing countries," Energy, Elsevier, vol. 48(1), pages 431-439.
    10. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    11. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    12. Dali, Mehdi & Belhadj, Jamel & Roboam, Xavier, 2010. "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 35(6), pages 2587-2595.
    13. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    14. Rajkumar, R.K. & Ramachandaramurthy, V.K. & Yong, B.L. & Chia, D.B., 2011. "Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy," Energy, Elsevier, vol. 36(8), pages 5148-5153.
    15. Hiremath, R.B. & Shikha, S. & Ravindranath, N.H., 2007. "Decentralized energy planning; modeling and application--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 729-752, June.
    16. Ferrer-Martí, Laia & Garwood, Anna & Chiroque, José & Ramirez, Benito & Marcelo, Oliver & Garfí, Marianna & Velo, Enrique, 2012. "Evaluating and comparing three community small-scale wind electrification projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5379-5390.
    17. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    18. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    19. Himri, Y. & Boudghene Stambouli, A. & Draoui, B. & Himri, S., 2008. "Techno-economical study of hybrid power system for a remote village in Algeria," Energy, Elsevier, vol. 33(7), pages 1128-1136.
    20. Quiggin, Daniel & Cornell, Sarah & Tierney, Michael & Buswell, Richard, 2012. "A simulation and optimisation study: Towards a decentralised microgrid, using real world fluctuation data," Energy, Elsevier, vol. 41(1), pages 549-559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Abdul-Salam, Yakubu & Phimister, Euan, 2016. "How effective are heuristic solutions for electricity planning in developing countries," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 14-24.
    3. Chmiel, Zbigniew & Bhattacharyya, Subhes C., 2015. "Analysis of off-grid electricity system at Isle of Eigg (Scotland): Lessons for developing countries," Renewable Energy, Elsevier, vol. 81(C), pages 578-588.
    4. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    5. Abdelkader, Abbassi & Rabeh, Abbassi & Mohamed Ali, Dami & Mohamed, Jemli, 2018. "Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage," Energy, Elsevier, vol. 163(C), pages 351-363.
    6. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    7. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    8. Giaouris, Damian & Papadopoulos, Athanasios I. & Ziogou, Chrysovalantou & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos & Stergiopoulos, Fotis & Elmasides, Costas, 2013. "Performance investigation of a hybrid renewable power generation and storage system using systemic power management models," Energy, Elsevier, vol. 61(C), pages 621-635.
    9. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2014. "A heuristic method to design autonomous village electrification projects with renewable energies," Energy, Elsevier, vol. 73(C), pages 96-109.
    10. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    11. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2015. "A meta-heuristic method to design off-grid community electrification projects with renewable energies," Energy, Elsevier, vol. 93(P2), pages 2467-2482.
    12. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    13. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2014. "A heuristic method to design autonomous village electrification projects with renewable energies," Energy, Elsevier, vol. 73(C), pages 96-109.
    2. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    3. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    4. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    5. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    6. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    7. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    8. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    9. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    10. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    11. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    14. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    15. Ouedraogo, Bachir I. & Kouame, S. & Azoumah, Y. & Yamegueu, D., 2015. "Incentives for rural off grid electrification in Burkina Faso using LCOE," Renewable Energy, Elsevier, vol. 78(C), pages 573-582.
    16. Gill-Wiehl, A. & Miles, S. & Wu, J. & Kammen, D.M., 2022. "Beyond customer acquisition: A comprehensive review of community participation in mini grid projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    18. Han, Seulki & Won, Wangyun & Kim, Jiyong, 2017. "Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems," Energy, Elsevier, vol. 129(C), pages 86-100.
    19. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    20. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:50:y:2013:i:c:p:501-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.