IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p4244-4255.html
   My bibliography  Save this article

Market-based congestion management in electric power systems with increased share of natural gas dependent power plants

Author

Listed:
  • Pantoš, Miloš

Abstract

The paper addresses market-based congestion management (MBCM) in electric power systems taking into account the constraints of the electric power system (EPS) and the natural gas system (NGS). The proposed method is based on the countertrade methodology, where the system operator performs minimum-cost redispatching according to bids from generators and loads. The EPS is presented by the DC model for power flow calculation, which uses power transfer distribution factors (PTDFs) to describe the relation between generators/loads and line-power flows. The proposed solution applies the Benders decomposition method to decouple the problem into a master problem and subproblem. The master problem includes the bid-based redispatching for congestion relief and the EPS feasibility check. The subproblem checks the NGS operation feasibility when gas-fired generating units are redispatched in the master problem. Any NGS violations from the subproblem are incorporated into the master problem as power constraints for the next iteration of congestion management. The master problem is solved by linear programming. The NGS is presented in a nonlinear model and its feasibility check is performed using successive linear programming. Case studies illustrate the applicability of the proposed congestion management method on simple test models of the EPS and the NGS.

Suggested Citation

  • Pantoš, Miloš, 2011. "Market-based congestion management in electric power systems with increased share of natural gas dependent power plants," Energy, Elsevier, vol. 36(7), pages 4244-4255.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4244-4255
    DOI: 10.1016/j.energy.2011.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211002684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Richard P. O'Neill & Mark Williard & Bert Wilkins & Ralph Pike, 1979. "A Mathematical Programming Model for Allocation of Natural Gas," Operations Research, INFORMS, vol. 27(5), pages 857-873, October.
    3. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan & Sun, Yonghui & Zang, Haixiang, 2016. "Probabilistic available transfer capability calculation considering static security constraints and uncertainties of electricity–gas integrated energy systems," Applied Energy, Elsevier, vol. 167(C), pages 305-316.
    2. Tabandeh, Abbas & Abdollahi, Amir & Rashidinejad, Masoud, 2016. "Reliability constrained congestion management with uncertain negawatt demand response firms considering repairable advanced metering infrastructures," Energy, Elsevier, vol. 104(C), pages 213-228.
    3. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    4. Saldarriaga-C., Carlos A. & Salazar, Harold, 2016. "Security of the Colombian energy supply: The need for liquefied natural gas regasification terminals for power and natural gas sectors," Energy, Elsevier, vol. 100(C), pages 349-362.
    5. Ghasemi, Ahmad & Jamshidi Monfared, Houman & Loni, Abdolah & Marzband, Mousa, 2021. "CVaR-based retail electricity pricing in day-ahead scheduling of microgrids," Energy, Elsevier, vol. 227(C).
    6. Aldarajee, Ammar H.M. & Hosseinian, Seyed H. & Vahidi, Behrooz, 2020. "A secure tri-level planner-disaster-risk-averse replanner model for enhancing the resilience of energy systems," Energy, Elsevier, vol. 204(C).
    7. Haas, Reinhard & Lettner, Georg & Auer, Hans & Duic, Neven, 2013. "The looming revolution: How photovoltaics will change electricity markets in Europe fundamentally," Energy, Elsevier, vol. 57(C), pages 38-43.
    8. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.
    9. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2015. "Integration of nodal hourly pricing in day-ahead SDC (smart distribution company) optimization framework to effectively activate demand response," Energy, Elsevier, vol. 86(C), pages 649-660.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    2. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    3. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    4. Jesco Humpola & Felipe Serrano, 2017. "Sufficient pruning conditions for MINLP in gas network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 239-261, March.
    5. Jesco Humpola & Armin Fügenschuh & Thorsten Koch, 2016. "Valid inequalities for the topology optimization problem in gas network design," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 597-631, July.
    6. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    7. Ríos-Mercado, Roger Z. & Borraz-Sánchez, Conrado, 2015. "Optimization problems in natural gas transportation systems: A state-of-the-art review," Applied Energy, Elsevier, vol. 147(C), pages 536-555.
    8. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    10. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    11. repec:cty:dpaper:1464 is not listed on IDEAS
    12. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    13. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    14. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    15. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    16. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    17. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2023. "Analytical sensitivity analysis of radial natural gas networks," Energy, Elsevier, vol. 263(PC).
    18. R. Navarro & H. Rojas & Izabelly S. De Oliveira & J. E. Luyo & Y. P. Molina, 2022. "Optimization Model for the Integration of the Electric System and Gas Network: Peruvian Case," Energies, MDPI, vol. 15(10), pages 1-32, May.
    19. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    20. Johannes Thürauf, 2022. "Deciding the feasibility of a booking in the European gas market is coNP-hard," Annals of Operations Research, Springer, vol. 318(1), pages 591-618, November.
    21. Brian Sergi & Kwabena Pambour, 2022. "An Evaluation of Co-Simulation for Modeling Coupled Natural Gas and Electricity Networks," Energies, MDPI, vol. 15(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4244-4255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.